Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Memory Design Breakthrough Can Lead to Faster Computers

January 12th, 2006

Memory Design Breakthrough Can Lead to Faster Computers

Abstract:
Imagine a computer that doesn't lose data even in a sudden power outage, or a coin-sized hard drive that could store 100 or more movies. Magnetic random-access memory, or MRAM, could make these possible, and would also offer numerous other advantages. It would, for instance, operate at much faster than the speed of ordinary memory but consume 99 percent less energy.

A team of researchers at The Johns Hopkins University, writing in the Jan. 13 issue of Physical Review Letters, has come up with one possible answer: tiny asymmetrical cobalt or nickel rings that can serve as memory cells. These "nanorings" can store a great quantity of information. They also are immune to the problem of "stray" magnetic fields, which are fields that "leak" from other kinds of magnets and can thus interfere with magnets next to them.

Source:
Johns Hopkins University

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Graphene's sleeping superconductivity awakens: Since its discovery in 2004, scientists have believed that graphene may have the innate ability to superconduct. Now Cambridge researchers have found a way to activate that previously dormant potential January 24th, 2017

New low-cost technique converts bulk alloys to oxide nanowires January 24th, 2017

Harris & Harris Group Announces the Filing of Preliminary Proxy Materials Detailing Its Proposed Conversion From a BDC to a Registered Closed-End Fund January 24th, 2017

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

Memory Technology

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

New material with ferroelectricity and ferromagnetism may lead to better computer memory December 21st, 2016

Characterization of magnetic nanovortices simplified December 21st, 2016

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project