Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NanoBucky!

NanoBucky!

August 29, 2005

A team of chemistry researchers at the University of Wisconsin-Madison has put a new twist on an old philosophical riddle: How many Bucky Badger mascots can you fit on the head of a pin?

The answer: 9,000, with a little help from nanotechnology.

Bucky Badger
Scrunched together, roughly 9,000 of these Bucky Badgers could fit on the head of a pin. Nano Bucky, created in the research lab of UW-Madison chemistry professor Robert J. Hamers, is composed of tiny carbon nanofiber "hairs," each just 75 nanometers in diameter. (A nanometer is equivalent to 1 billionth of a meter.) The nanofibers, one of several nanostructured forms of carbon developed in the last several years, have numerous potential applications and could play a role in the development of such things as tiny sensors for detecting chemical and biological agents. They may also have use in energy storage applications such as capacitors and lithium-ion batteries. The fibers, and Nano Bucky, are "grown" in a plasma deposition chamber where a mix of acetylene and ammonia gas are used with electrical current to prompt the growth of the nanofibers on a silicon substrate patterned with a nickel catalyst. The pattern for the catalyst is composed on a computer and is then traced on the substrate by a beam of electrons. Copyright © S.E. Baker, K-Y. Tse, M. Marcus, Jeremy Streifer, and Robert J. Hamers.
Click on image for larger version.

NanoBucky, created in the research lab of UW-Madison chemistry professor Robert J. Hamers, is composed of tiny carbon nanofiber "hairs," each just 75 nanometers in diameter. (A nanometer is equivalent to 1 billionth of a meter.) NanoBucky provides an entertaining illustration of the astounding scale under which nanotechnology pioneers ply their trade.

The nanofibers, one of several nanostructured forms of carbon developed in the last several years, have numerous potential applications and could play a role in the development of such things as tiny sensors for detecting chemical and biological agents. They may also have use in energy storage applications such as capacitors and lithium-ion batteries.

The fibers, and NanoBucky, are "grown" in a plasma deposition chamber where a mix of acetylene and ammonia gas are used with electrical current to prompt the growth of the nanofibers on a silicon substrate patterned with a nickel catalyst. The pattern for the catalyst is composed on a computer and is then traced on the substrate by a beam of electrons.

For more information on the fundamental science underlying NanoBucky, contact Hamers at (608) 262-6371; hamers@chem.wisc.edu

####
Media Contacts:
Terry Devitt
(608) 262-8282
trdevitt@wisc.edu

Copyright University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Materials/Metamaterials

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Announcements

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project