Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NanoBucky!

NanoBucky!

August 29, 2005

A team of chemistry researchers at the University of Wisconsin-Madison has put a new twist on an old philosophical riddle: How many Bucky Badger mascots can you fit on the head of a pin?

The answer: 9,000, with a little help from nanotechnology.

Bucky Badger
Scrunched together, roughly 9,000 of these Bucky Badgers could fit on the head of a pin. Nano Bucky, created in the research lab of UW-Madison chemistry professor Robert J. Hamers, is composed of tiny carbon nanofiber "hairs," each just 75 nanometers in diameter. (A nanometer is equivalent to 1 billionth of a meter.) The nanofibers, one of several nanostructured forms of carbon developed in the last several years, have numerous potential applications and could play a role in the development of such things as tiny sensors for detecting chemical and biological agents. They may also have use in energy storage applications such as capacitors and lithium-ion batteries. The fibers, and Nano Bucky, are "grown" in a plasma deposition chamber where a mix of acetylene and ammonia gas are used with electrical current to prompt the growth of the nanofibers on a silicon substrate patterned with a nickel catalyst. The pattern for the catalyst is composed on a computer and is then traced on the substrate by a beam of electrons. Copyright © S.E. Baker, K-Y. Tse, M. Marcus, Jeremy Streifer, and Robert J. Hamers.
Click on image for larger version.

NanoBucky, created in the research lab of UW-Madison chemistry professor Robert J. Hamers, is composed of tiny carbon nanofiber "hairs," each just 75 nanometers in diameter. (A nanometer is equivalent to 1 billionth of a meter.) NanoBucky provides an entertaining illustration of the astounding scale under which nanotechnology pioneers ply their trade.

The nanofibers, one of several nanostructured forms of carbon developed in the last several years, have numerous potential applications and could play a role in the development of such things as tiny sensors for detecting chemical and biological agents. They may also have use in energy storage applications such as capacitors and lithium-ion batteries.

The fibers, and NanoBucky, are "grown" in a plasma deposition chamber where a mix of acetylene and ammonia gas are used with electrical current to prompt the growth of the nanofibers on a silicon substrate patterned with a nickel catalyst. The pattern for the catalyst is composed on a computer and is then traced on the substrate by a beam of electrons.

For more information on the fundamental science underlying NanoBucky, contact Hamers at (608) 262-6371; hamers@chem.wisc.edu

####
Media Contacts:
Terry Devitt
(608) 262-8282
trdevitt@wisc.edu

Copyright University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Materials/Metamaterials

Flexible Metamaterial Absorbers July 29th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE