Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > NanoBucky!

NanoBucky!

August 29, 2005

A team of chemistry researchers at the University of Wisconsin-Madison has put a new twist on an old philosophical riddle: How many Bucky Badger mascots can you fit on the head of a pin?

The answer: 9,000, with a little help from nanotechnology.

Bucky Badger
Scrunched together, roughly 9,000 of these Bucky Badgers could fit on the head of a pin. Nano Bucky, created in the research lab of UW-Madison chemistry professor Robert J. Hamers, is composed of tiny carbon nanofiber "hairs," each just 75 nanometers in diameter. (A nanometer is equivalent to 1 billionth of a meter.) The nanofibers, one of several nanostructured forms of carbon developed in the last several years, have numerous potential applications and could play a role in the development of such things as tiny sensors for detecting chemical and biological agents. They may also have use in energy storage applications such as capacitors and lithium-ion batteries. The fibers, and Nano Bucky, are "grown" in a plasma deposition chamber where a mix of acetylene and ammonia gas are used with electrical current to prompt the growth of the nanofibers on a silicon substrate patterned with a nickel catalyst. The pattern for the catalyst is composed on a computer and is then traced on the substrate by a beam of electrons. Copyright © S.E. Baker, K-Y. Tse, M. Marcus, Jeremy Streifer, and Robert J. Hamers.
Click on image for larger version.

NanoBucky, created in the research lab of UW-Madison chemistry professor Robert J. Hamers, is composed of tiny carbon nanofiber "hairs," each just 75 nanometers in diameter. (A nanometer is equivalent to 1 billionth of a meter.) NanoBucky provides an entertaining illustration of the astounding scale under which nanotechnology pioneers ply their trade.

The nanofibers, one of several nanostructured forms of carbon developed in the last several years, have numerous potential applications and could play a role in the development of such things as tiny sensors for detecting chemical and biological agents. They may also have use in energy storage applications such as capacitors and lithium-ion batteries.

The fibers, and NanoBucky, are "grown" in a plasma deposition chamber where a mix of acetylene and ammonia gas are used with electrical current to prompt the growth of the nanofibers on a silicon substrate patterned with a nickel catalyst. The pattern for the catalyst is composed on a computer and is then traced on the substrate by a beam of electrons.

For more information on the fundamental science underlying NanoBucky, contact Hamers at (608) 262-6371; hamers@chem.wisc.edu

####
Media Contacts:
Terry Devitt
(608) 262-8282
trdevitt@wisc.edu

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project