Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Discovery of 'Doping' Mechanism in Semiconductor Nanocrystals

Abstract:
Novel electronic devices based upon nanotechnology may soon be realized due to a new understanding of how impurities, or 'dopants,' can be intentionally incorporated into semiconductor nanocrystals.

Discovery of 'Doping' Mechanism in Semiconductor Nanocrystals Advances Potential of Nanotechnology

July 07, 2005

This understanding, announced today by researchers at the Naval Research Laboratory and the University of Minnesota (UMN), should help enable a variety of new technologies ranging from high-efficiency solar-cells and lasers to futuristic 'spintronic' and ultra-sensitive biodetection devices. The complete findings of the study are published in the July 7, 2005, issue of the journal Nature.

Nanocrystals are tiny semiconductor particles just a few millionths of a millimeter across. Due to their small size, they exhibit unique electronic, optical, and magnetic properties that can be utilized in a variety of technologies. To move toward this end, chemical methods have been optimized over the last 20 years to synthesize extremely pure nanocrystals. More problematic, however, has been the goal of controllably incorporating selected impurities into these particles. Conventional semiconductor devices, such as the transistor, would not operate without such impurities. Moreover, theory predicts that dopants should have even greater impact on semiconductor nanocrystals. Thus, doping is a critical step for tailoring their properties for specific applications.

A long-standing mystery has been why impurities could not be incorporated into some types of semiconductor nanocrystals. The findings by NRL and UMN researchers establish the underlying reasons for these difficulties, and provide a rational foundation for resolving them in a wide variety of nanocrystal systems. "The key lies in the nanocrystal's surface," said Dr. Steven Erwin, a physicist at NRL and lead theorist on the project. "If an impurity atom can stick, or 'adsorb,' to the surface strongly enough, it can eventually be incorporated into the nanocrystal as it grows. If the impurity binds to the nanocrystal surface too weakly, or if the strongly binding surfaces are only a small fraction of the total, then doping will be difficult." From calculations based on this central idea, the team could predict conditions favorable for doping. Experiments at UMN then confirmed these predictions, including the incorporation of impurities into nanocrystals that were previously believed to be undopable. Thus, a variety of new doped nanocrystals may now be possible, an important advance toward future nanotechnologies.

According to Dr. David Norris, an Associate Professor of Chemical Engineering and Materials Science at UMN and the lead experimentalist on the team, "an exciting aspect of these results is that they overturn a common belief that nanocrystals are intrinsically difficult to dope because they somehow 'self-purify' by expelling impurities from their interior. According to this view, the same mechanisms that made it possible to grow very pure nanocrystals also made it extremely difficult to dope them. We have shown that doping difficulties are not intrinsic, and indeed are amenable to systematic optimization using straightforward methods from physical chemistry."

Future efforts will focus on incorporating impurities which are chosen for specific applications. For example, solar cells and lasers could benefit from impurities that add an additional electrical charge to the nanocrystal. In addition, impurities will be chosen to explore the use of nanocrystals in spin electronics (or "spintronics"). Spintronic devices utilize the fact that electrons not only possess charge, but also a quantum mechanical spin. The spin provides an additional degree of freedom that can be exploited in devices to realize a host of new spintronic technologies, from. nonvolatile "instant-on" computers to so-called "reconfigurable logic" elements whose underlying circuitry can be changed on-the-fly.

The research was conducted by Dr. Steven Erwin, Dr. Michael Haftel, and Dr. Alexander Efros from NRL's Materials Science and Technology Division; Dr. Thomas Kennedy from NRL's Electronics Science and Technology Division; and Ms. Lijun Zu and Professor David Norris from the Department of Chemical Engineering and Materials Science at the University of Minnesota. The Office of Naval Research and the National Science Foundation provided funding for the research.


####

About NRL:
NRL conducts a broadly-based multidisciplinary program of scientific research and advanced technological development directed toward maritime applications of new and improved materials, techniques, equipment, systems, and ocean, atmospheric, and space sciences and related technologies.

For more information, please visit www.nrl.navy.mil


Contact:
Donna McKinney
nrl1030@ccs.nrl.navy.mil
202-767-2541

Copyright © U.S. Naval Research Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Spintronics

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

Chip Technology

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Sensors

Promising new method for rapidly screening cancer drugs: UMass Amherst researchers invent fast, accurate new nanoparticle-based sensor system December 15th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Nanosensor to Detect Naproxen Drug Produced in Iran December 6th, 2014

Discoveries

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Energy

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE