Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Discovery of 'Doping' Mechanism in Semiconductor Nanocrystals

Abstract:
Novel electronic devices based upon nanotechnology may soon be realized due to a new understanding of how impurities, or 'dopants,' can be intentionally incorporated into semiconductor nanocrystals.

Discovery of 'Doping' Mechanism in Semiconductor Nanocrystals Advances Potential of Nanotechnology

July 07, 2005

This understanding, announced today by researchers at the Naval Research Laboratory and the University of Minnesota (UMN), should help enable a variety of new technologies ranging from high-efficiency solar-cells and lasers to futuristic 'spintronic' and ultra-sensitive biodetection devices. The complete findings of the study are published in the July 7, 2005, issue of the journal Nature.

Nanocrystals are tiny semiconductor particles just a few millionths of a millimeter across. Due to their small size, they exhibit unique electronic, optical, and magnetic properties that can be utilized in a variety of technologies. To move toward this end, chemical methods have been optimized over the last 20 years to synthesize extremely pure nanocrystals. More problematic, however, has been the goal of controllably incorporating selected impurities into these particles. Conventional semiconductor devices, such as the transistor, would not operate without such impurities. Moreover, theory predicts that dopants should have even greater impact on semiconductor nanocrystals. Thus, doping is a critical step for tailoring their properties for specific applications.

A long-standing mystery has been why impurities could not be incorporated into some types of semiconductor nanocrystals. The findings by NRL and UMN researchers establish the underlying reasons for these difficulties, and provide a rational foundation for resolving them in a wide variety of nanocrystal systems. "The key lies in the nanocrystal's surface," said Dr. Steven Erwin, a physicist at NRL and lead theorist on the project. "If an impurity atom can stick, or 'adsorb,' to the surface strongly enough, it can eventually be incorporated into the nanocrystal as it grows. If the impurity binds to the nanocrystal surface too weakly, or if the strongly binding surfaces are only a small fraction of the total, then doping will be difficult." From calculations based on this central idea, the team could predict conditions favorable for doping. Experiments at UMN then confirmed these predictions, including the incorporation of impurities into nanocrystals that were previously believed to be undopable. Thus, a variety of new doped nanocrystals may now be possible, an important advance toward future nanotechnologies.

According to Dr. David Norris, an Associate Professor of Chemical Engineering and Materials Science at UMN and the lead experimentalist on the team, "an exciting aspect of these results is that they overturn a common belief that nanocrystals are intrinsically difficult to dope because they somehow 'self-purify' by expelling impurities from their interior. According to this view, the same mechanisms that made it possible to grow very pure nanocrystals also made it extremely difficult to dope them. We have shown that doping difficulties are not intrinsic, and indeed are amenable to systematic optimization using straightforward methods from physical chemistry."

Future efforts will focus on incorporating impurities which are chosen for specific applications. For example, solar cells and lasers could benefit from impurities that add an additional electrical charge to the nanocrystal. In addition, impurities will be chosen to explore the use of nanocrystals in spin electronics (or "spintronics"). Spintronic devices utilize the fact that electrons not only possess charge, but also a quantum mechanical spin. The spin provides an additional degree of freedom that can be exploited in devices to realize a host of new spintronic technologies, from. nonvolatile "instant-on" computers to so-called "reconfigurable logic" elements whose underlying circuitry can be changed on-the-fly.

The research was conducted by Dr. Steven Erwin, Dr. Michael Haftel, and Dr. Alexander Efros from NRL's Materials Science and Technology Division; Dr. Thomas Kennedy from NRL's Electronics Science and Technology Division; and Ms. Lijun Zu and Professor David Norris from the Department of Chemical Engineering and Materials Science at the University of Minnesota. The Office of Naval Research and the National Science Foundation provided funding for the research.


####

About NRL:
NRL conducts a broadly-based multidisciplinary program of scientific research and advanced technological development directed toward maritime applications of new and improved materials, techniques, equipment, systems, and ocean, atmospheric, and space sciences and related technologies.

For more information, please visit www.nrl.navy.mil


Contact:
Donna McKinney
nrl1030@ccs.nrl.navy.mil
202-767-2541

Copyright © U.S. Naval Research Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Spintronics

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Chip Technology

Breakthrough in ALD-graphene by Picosun technology October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Speed at its limits September 30th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

Sensors

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Discoveries

Novel approach to magnetic measurements atom-by-atom October 1st, 2014

Nanoparticles Accumulate Quickly in Wetland Sediment: Aquatic food chains might be harmed by molecules "piggybacking" on carbon nanoparticles October 1st, 2014

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

Announcements

'Stealth' nanoparticles could improve cancer vaccines October 1st, 2014

Stressed Out: Research Sheds New Light on Why Rechargeable Batteries Fail October 1st, 2014

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Graphene chips are close to significant commercialization October 1st, 2014

Energy

New Absorber Will Lead to Better Biosensor: Biosensors are more sensitive and able to detect smaller changes in the environment October 1st, 2014

Production of Filters for Separation of Water from Petroleum Products in Iran October 1st, 2014

Production of Anticorrosive Chromate Nanocoatings in Iran September 27th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE