Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Better way to generate power from thermal sources

Abstract:
Nanomaterials soon may be used to make refrigerators which can last a lifetime, efficiently generate electricity from waste heat, and realize geothermal potential

Scientists discover better way to generate power from thermal sources

Houston, TX | April 05, 2005

Your car's engine loses 70 percent of its energy as waste heat-but Australian and Oregon scientists may have figured out an efficient way not only to recover that lost energy, but to at long last capture the power-producing potential of geothermal heat.

The trick is to convert it to electricity-and a promising way to accomplish this, the researchers have discovered, involves using extremely thin nanowires to potentially more than double the efficiency of thermoelectric materials.

"If all goes well, nanostructured thermoelectric devices may be practical for applications such as recycling of waste heat in car engines, on-chip cooling of computer microprocessors and silent, more compact domestic refrigerators," says Heiner Linke, a University of Oregon assistant professor of physics associated with ONAMI, the Oregon Nanoscience and Microtechnologies Institute.

Linke and Tammy Humphrey, an Australian Research Council fellow currently visiting the University of California at Santa Cruz, presented their findings today (Tuesday, April 5) at the Nanoscale Devices and System Integration Conference in Houston. A review of their study in the online version of the journal Nature Materials described their results as "dramatic" and "a phenomenal enhancement relative to current bulk thermoelectrics."

The pair discovered that two objects can have different temperatures yet still be in equilibrium with each other at the nanoscale-a fact that may blow right past a non-physicist but which is crucial in order to attain the kind of performance needed for widespread application of thermoelectric technology in power generation and refrigeration.

Imagine a hot cup of coffee sitting on a bench. The coffee will quickly cool because molecules in the cup spontaneously ferry heat from hot to cold in a rush to reach equilibrium with the temperature of the bench. The same effect happens with electrons in the materials studied by Humphrey and Linke. In physics, this is the law of thermodynamics: that heat will always flow from hot to cold. Of course, the energy expended by those electrons is normally lost.

Thermoelectric materials try to recover this energy by converting it to electricity, but they don't work very well if the flow of heat is uncontrolled. The breakthrough presented by Humphrey and Linke involves controlling the motion of electrons using materials that are structured on the nanoscale.

"The idea is to play one type of non-equilibrium (the temperature difference) against another one," Linke explains.

Humphrey and Linke have shown that if an electrical voltage is applied to an electrical system in addition to a temperature difference, it is possible to harness electrons having a specific energy. This means that if a nanostructured material is designed to only allow electrons with this particular energy to flow, a novel type of equilibrium is achieved in which electrons do not spontaneously ferry heat from hot to cold.

"This delicate balance may have huge practical importance because it means that thermoelectric devices, which use electrical contact between hot and cold regions in a semiconductor to transform heat into useful electrical energy, can be operated near equilibrium," says Humphrey. "This is a key requirement for cranking up their efficiency toward the Carnot limit, the maximum efficiency possible for any heat engine."

Because the system is in a state of equilibrium, the flow of electrons is reversible, Humphrey explains, noting that reversibility allows the device to reach maximum possible efficiency.

Until now, the efficiency of such devices, which have no moving parts and can be small enough to fit on a microchip, has been too low (less than 15 percent of the Carnot limit for power generation) for use in all but a few specialized applications.

However, Linke and Humphrey say implementation of their design principle is possible by tailoring the electronic bandstructure in state-of-the-art thermoelectric materials made up of a huge number of nanowires. If all goes well, nanostructured thermoelectric devices with efficiencies close to 50 percent of the Carnot limit may be realized, Linke says.

Such materials could make possible the generation of electricity from geothermal sources-or from the waste heat of engines in hybrid cars, he explains.

The study was funded by the Australian Research Council and Linke's CAREER Award from the National Science Foundation.

####



Editors Note:
Heiner Linke may be reached in Houston through 11:30 a.m. on Wednesday, April 6, at (713) 526-1991. His name is pronounced HEYE ner LINK ee.

Photos:
Heiner Linke
Tammy Humphre

Sources:
Heiner Linke
(541) 346-4583
linke@uoregon.edu

Tammy Humphrey
(831) 459-1292
tammy.humphrey@unsw.edu.au



Contact:
Melody Ward Leslie
(541) 346-2060
mleslie@uoregon.edu

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Discoveries

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Materials/Metamaterials

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Proposed TSCA Nanomaterial Rule ‘Premature’, Says Former EPA Toxicologist July 1st, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project