Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > World's fastest oscillating nanomachine holds promise

BU teamís nanomechanical device bridges classic and quantum physics

World's fastest oscillating nanomachine holds promise for telecommunications, quantum computing

Boston, MD | February 9, 2005

Nanotechnology leapt into the realm of quantum mechanics this past winter when an antenna-like sliver of silicon one-tenth the width of a human hair oscillated in a lab in a Boston University basement. With two sets of protrusions, much like the teeth from a two-sided comb or the paddles from a rowing shell, the antenna not only exhibits the first quantum nanomechanical motion but is also the world's fastest moving nanostructure.

A team of Boston University physicists led by Assistant Professor Pritiraj Mohanty developed the nanomechanical oscillator. Operating at gigahertz speeds, the technology could help further miniaturize wireless communication devices like cell phones, which exchange information at gigahertz frequencies. But, more important to the researchers, the oscillator lies at the cusp of classic physics, what people experience everyday, and quantum physics, the behavior of the molecular world.

Comprised of 50 billion atoms, the antenna built by Mohanty's team is so far the largest structure to display quantum mechanical movements.

"It's a truly macroscopic quantum system," says Alexei Gaidarzhy, the paper's lead author and a graduate student in the BU College of Engineering's Department of Aerospace and Mechanical Engineering. The device is also the fastest of its kind, oscillating at 1.49 gigahertz, or 1.49 billion times a second, breaking the previous record of 1.02 gigahertz achieved by a nanomachine produced by another group.

According to Gaidarzhy, during the past several decades engineers have made phenomenal advances in information technology by shrinking electronic circuitry and devices to fit onto semiconductor chips. Shrinking electronic or mechanical systems further, he says, will inevitably require new paradigms involving quantum theory. For example, these mechanical/quantum mechanical hybrids could be used for quantum computing.

Because Mohanty's nanomechanical oscillator is "large," the research team was able to attach electrical wiring to its surface in order to monitor tiny discrete quantum motion, behavior that exists in the realm of atoms and molecules.

At a certain frequency, the paddles begin to vibrate in concert, causing the central beam to move at that same high frequency, but at an increased and easily measured amplitude. Where each paddle moves only about a femtometer, roughly the diameter of an atom's nucleus, the antenna moves over a distance of one-tenth of a picometer, a tiny distance that still translates to a 100-fold increase in amplitude.

When fabricating and testing the nanomechanical device, the researchers placed the entire apparatus, including the cryostat and monitoring devices, in a state-of-the-art, copper-walled, copper-floored room. This set-up shielded the experiment from unwanted vibration noise and electromagnetic radiation that could generate from outside electrical devices, such as cell phone signals, or even the movement of subway trains outside the building.

Even with these precautions, performing such novel experiments is tricky. "When it's a new phenomenon, it's best not to be guided by expectations based on conventional wisdom," says Gaidarzhy. "The philosophy here is to let the data speak for itself."

The group carries out the experiments under extremely cold conditions, at a temperature of 110 millikelvin, which is only a tenth of a degree above the absolute zero. When cooled to such a low temperature, the nanomechanical oscillator starts to jump between two discrete positions without occupying the physical space in between, a telltale sign of quantum behavior.

In addition to Gaidarzhy, Mohanty's team consists of Guiti Zolfagharkhani, a graduate student, and Robert L. Badzey, a post-doctoral fellow in BU's Physics Department. Their paper appears in the January 28, 2005 issue of Physical Review Letters. The research was supported by grants from the National Science Foundation, Department of Defense, Petroleum Research Fund, and the Sloan Foundation.


Boston University's Physics Department, part of its College and Graduate School of Arts and Sciences, provides research opportunities in areas such as nanoscience, experimental high-energy physics and astrophysics, molecular biophysics, theoretical condensed-matter physics, and polymer physics. Research in the Department of Aerospace and Mechanical Engineering includes robotics, MEMS, and nanotechnology.

Boston University, with an enrollment of more than 29,000 in its 17 schools and colleges, is the fourth largest independent university in the United States.

Ann Marie Menting or Cory Hatch
Boston University

Copyright © Boston University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Quantum Computing

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017


A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project