Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Teaching Nanotech to Swim

July 21st, 2004

Teaching Nanotech to Swim

Abstract:
When objects have vanishingly small masses, the effects of viscosity become far more important than the effects of inertia. The upshot is that in the nanoworld, there is no such thing as glide. Translated to the nanoscale, the scissors kick that sends a skin diver coasting over a coral reef would produce only a surge forward then back to the same spot. Moving even a micrometer-sized object through water becomes a lot like trying to breaststroke through honey. Move down the scale to the nanometer realm, and the problem is even worse.

Ali Najafi and Ramin Golestanian of the Institute for Advances Studies in Basic Sciences in Zanjan, Iran, have proposed a solution that requires only the shortening and lengthening of two rigid rods.

Source:
technologyreview

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE