Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Teaching Nanotech to Swim

July 21st, 2004

Teaching Nanotech to Swim

Abstract:
When objects have vanishingly small masses, the effects of viscosity become far more important than the effects of inertia. The upshot is that in the nanoworld, there is no such thing as glide. Translated to the nanoscale, the scissors kick that sends a skin diver coasting over a coral reef would produce only a surge forward then back to the same spot. Moving even a micrometer-sized object through water becomes a lot like trying to breaststroke through honey. Move down the scale to the nanometer realm, and the problem is even worse.

Ali Najafi and Ramin Golestanian of the Institute for Advances Studies in Basic Sciences in Zanjan, Iran, have proposed a solution that requires only the shortening and lengthening of two rigid rods.

Source:
technologyreview

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

Measuring the Smallest Magnets July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE