Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > Printable Silicon For Ultrahigh Performance Flexible Electronics

June 24th, 2004

Printable Silicon For Ultrahigh Performance Flexible Electronics

Abstract:
By carving specks of single crystal silicon from a bulk wafer and casting them onto sheets of plastic, scientists at the University of Illinois at Urbana-Champaign have demonstrated a route to ultrahigh performance, mechanically flexible thin-film transistors. The process could enable new applications in consumer electronics - such as inexpensive wall-to-wall displays and intelligent but disposable radio frequency identification tags - and could even be used in applications that require significant computing power.

Source:
SpaceDaily

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Possible Futures

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

Discoveries

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Remote control of transport through nanopores: New study outlines key factors affecting the transfer of molecules through biological channels May 24th, 2018

'Spooky action at a distance': Researchers develop module for quantum repeater May 23rd, 2018

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits: Team is first to directly image propagation and dynamics of graphene plasmons at very low temperatures; findings could impact optical communications and signal processing May 23rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project