Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Electronic doping, one atom at a time

March 11th, 2004

Electronic doping, one atom at a time

Abstract:
While the semiconductor industry today routinely dopes bulk silicon with billions of atoms of boron or phosphorous to obtain desired electrical properties, a team of physicists at the University of California, Berkeley, has succeeded in changing the properties of a single molecule by doping it just one atom at a time. "We can precisely change the exact number of dopant atoms attached to a single molecule, either adding or removing them, which is something no one has been able to do before. We've really shown a new level of control of the electronic properties of a molecule," said Michael F. Crommie, UC Berkeley professor of physics.

Source:
NN

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE