Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > News > Theory puts new spin on IC spin current

September 24th, 2003

Theory puts new spin on IC spin current

Abstract:
A recent theoretical study of the quantum Hall effect (QHE), a type of superconductivity that occurs in semiconductors, suggests a new route to room-temperature quantum computers. The researchers think they have discovered a spin current that is associated with holes rather than electrons in semiconductors. The predicted current would be able to inject spin momentum into quantum dots and would also interact with conventional electron currents, providing a bridge between electronics and spin-based quantum circuits.

Source:
EETimes

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Quantum Computing

Molecular engineers record an electron's quantum behavior August 14th, 2014

Diamonds are a Quantum Computer’s Best Friend: A new kind of quantum computer is being proposed by scientists from the TU Wien (Vienna) and Japan (National Institute of Informatics and NTT Basic Research Labs) August 8th, 2014

Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement August 5th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE