Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Finding the most heat-resistant substances ever made: UVA Engineering secures DOD MURI award to advance high-temperature materials

Postdoctoral researcher Sandamal Witharamage (from left) is part of Professor Elizabeth J. Opila’s team developing novel planetary- and geologically inspired high-temperature materials under a Department of Defense Multidisciplinary University Research Initiative grant. 

CREDIT
University of Virginia School of Engineering and Applied Science
Postdoctoral researcher Sandamal Witharamage (from left) is part of Professor Elizabeth J. Opila’s team developing novel planetary- and geologically inspired high-temperature materials under a Department of Defense Multidisciplinary University Research Initiative grant. CREDIT University of Virginia School of Engineering and Applied Science

Abstract:
The most durable, heat-resistant materials ever made could be hiding in plain sight.

Finding the most heat-resistant substances ever made: UVA Engineering secures DOD MURI award to advance high-temperature materials

Charlottesville, VA | Posted on December 8th, 2023

The U.S. Department of Defense wants to know if minerals and rocks found on Earth and in space hold the secrets of next-generation high-temperature materials. To find out, the DOD awarded $6.25 million through its Multidisciplinary University Research Initiative, or MURI, to a team from the University of Virginia and Arizona State University. The group is led by UVA’s Elizabeth J. Opila, the Rolls-Royce Commonwealth Professor and chair of the Department of Materials Science and Engineering.

The highly competitive MURI funds fundamental scientific research the DOD hopes will lead to breakthroughs in its areas of interest through collective insights from multiple disciplines.

Reading the Rocks
“It’s a boom time for high-temperature materials because of needs in energy production, hypersonics and new things like additive manufacturing coming on in the field,” Opila said. “[People are] exploring new compositional spaces where you’re mixing different elements in different ways. On top of that we’re thinking about this geologically and planetary-inspired materials, which is lots of fun.”

Minerals and rocks are complex compared to the compounds materials scientists usually work with, Opila said, and that’s why the project’s potential is exciting.

“The geologists are really focused on how the earth formed and where we can find these different substances,” Opila said. “We want to take that knowledge and bring it into the application space.”

Selecting for specific physical properties, the researchers will copy Mother Nature’s use of mineral composition, temperature, pressure, and the rapid changes in these forces, to make their synthetic materials. The goal is to dramatically expand, and document for others, the means and ingredients from which high-temperature materials can be processed to surpass anything yet conjured by people or nature.

On the Hunt for Refractory Materials
Addressing needs for ever-better refractory materials — those which resist weakening, melting or decomposing under intense heat or corrosive conditions, the Army Research Office called for proposals on Emergent Refractory Behaviors in Earth and Extraterrestrial Materials. Amongst several objectives, Opila’s team will design, make, test and describe a host of new materials meant to outperform current ceramics, alloys and coatings used in intensely hot environments — for example, a 3,000-degree jet engine.

Opila is a former NASA scientist and innovator in heat- and corrosion-resistant materials. Her collaborators are experts in geology, computational modeling and materials science from UVA’s School of Engineering and Applied Science and ASU’s schools of Engineering of Matter, Transport and Energy; Molecular Sciences; and Earth and Space Exploration.

Fast-Tracking Discovery
Opila’s co-principal investigators from UVA’s Engineering are Patrick E. Hopkins, the Whitney Stone Professor of Engineering in mechanical and aerospace engineering, and assistant professor of materials science and engineering Bi-Cheng Zhou.

Hopkins’ ExSiTE Lab specializes in laser-based techniques for measuring thermal properties. His lab will be instrumental in characterizing the materials the team comes up with.

Zhou is a computational modeler known for inventing variations on the CALPHAD method to expand its capabilities. He and another computational modeling specialist, ASU assistant professor in materials science and engineering Qijun Hong, will use their respective expertise to fast-track discovery of promising “recipes” for experimental labs to try at both schools.

The ASU labs are run by Alexandra Navrotsky, a renowned interdisciplinary expert in thermodynamics and director of the Navrotsky Eyring Center for Materials of the Universe, and Hongwu Xu, a mineralogist and materials chemist and professor in ASU’s schools of Molecular Sciences and Earth and Space Exploration.

The teams will make and analyze prospective recipes — often exchanging samples for testing, Opila said, with her lab bringing extreme heat, while the ASU labs apply intense pressure as well as high-temperature testing.

Clipping Coupons
Synthesis of test samples typically starts with an element in powder form, said UVA Ph.D. student Pádraigín Stack, which is chemically altered to isolate a target material, or a component of a target.

The new composition, which has been diluted, heated and dried back to a powder, is then sintered, a process applying enough heat and pressure to form a dense puck of material. Thin slices from the puck, called coupons, provide the samples researchers will subject to various tests — for example, exposing it to steam at high velocities in Opila’s lab or, at ASU, applying geological-like pressures with a diamond anvil.

In addition to these traditional synthesis methods, the team will try approaches inspired by planetary or geological phenomena, such as hydrothermal synthesis, which occurs in heated water at elevated pressures. Since water is abundant in Earth’s hot, pressurized interior, hydrothermal processes are associated with, for example, the formation of minerals containing rare earth elements — critical components for many renewable energy applications.

In the lab, hydrothermal synthesis involves forming crystals in a hot water-based solution in a closed vessel such that gaseous molecules moving atop the liquid exert high vapor pressure within the system.

The Dilemma of Rare Earth Elements
One focus of the MURI project is utilizing rare earth elements. Many rare earth elements are already used in conventional high-temperature materials, such as environmental barrier coatings in aviation and hypersonic flight, as well as batteries, LED devices and other increasingly in-demand products — but at a steep cost. While not actually rare, separating the elements from soil and rock requires dozens of steps, most of them polluting.

“All these rare earth oxides that we’re going to use are in minerals right now,” Opila said. “Somebody mines them and then they have to separate them all. For example, ytterbium and lutetium are neighbors on the periodic table. They are so chemically similar, it takes 66 steps involving many chemicals resulting in nasty waste products.”

The separation problem led Opila to ask a question at the heart of another project she and her students are working on that’s related to the MURI: “What if you take a mineral made of elements you want straight out of the ground but not separate them, just clean it up a bit and make your material from that?”

They’re experimenting with xenotime, a common mineral, to improve environmental barrier coatings, or EBCs, which protect jet engine parts from hazards like high-velocity steam and desert sand. Ingested sand can melt into glass and react with the underlying alloy if it infiltrates the coating.

“We know certain minerals are stable because we can find them in the ground,” Stack said. “You don’t find metallic iron in the ground, you find iron oxide because iron oxide is what’s stable. Let’s explore why something is stable, or if it has other useful properties, and use that knowledge to make something better.”

####

For more information, please click here

Contacts:
Jennifer McManamay
University of Virginia School of Engineering and Applied Science

Office: 540-241-4002

Copyright © University of Virginia School of Engineering and Applied Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project