Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies

Experimental summary of mechanical measurements in the research of Ilaria Pecorari.
Experimental summary of mechanical measurements in the research of Ilaria Pecorari.

Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, reports on the research of Professor Luisa Mestroni's research laboratory which specializes in the study of genetics of cardiac muscle diseases. They use the JPK NanoWizard® AFM to help the characterization of cardiomyopathies.

JPK reports on research of the Mestroni Lab at the University of Colorado Denver which use the JPK NanoWizard® AFM to help in the characterization of cardiomyopathies

Berlin, Germany | Posted on April 24th, 2018


Professor Luisa Mestroni heads a laboratory studying the genetics of cardiac muscle diseases. Based at the University of Colorado Denver and working in conjunction with labs in Italy, the lab's interest is in the genes causing dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVD/C), left ventricular noncompaction and hypertrophic cardiomyopathy.

One of the group's PhD students is Ilaria Pecorari. She is studying the effect of the scaffold on the cardiac cells cytoskeleton. This is mainly focused on the study of mechanical behaviour and mechanotransduction phenomenon in cells carrying a genetic mutation that is responsible for the onset of a pathological condition. She describes the study: “I am currently investigating the response of certain type of cells to different mechanical stimuli, i.e. exposure of cells to substrates with tunable stiffness, but I am also probing the mechanical response of “healthy” and mutant cells via atomic force microscopy (AFM). For the latter, I am exploiting the setup provided by JPK Instruments, in which the atomic force microscope (NanoWizard®4a BioSciences) is coupled with a fluorescence microscope. I infect cells with viral constructs, so they will express both green fluorescent protein (GFP) and the mutant protein known as the cause of disease. The NanoWizard® enables me to simultaneously identify the cells expressing the mutant protein and probe them mechanically. Through the force-deformation curves and their post-processing analysis, I can detect if the genetic mutation affects the mechanical behaviour of a single cell. In the near future, I'd like to assess the mechanical properties of wild type (i.e. “healthy”) and mutant cells on substrates with different rigidities (thus either stiff or soft).”

Describing her experiences with AFM, Ms Pecorari continued; “Having been a user of AFM for eight years, I first used an AFM from JPK in 2016 while working under the supervision of Dr José Luis Toca-Herrera at the BOKU University in Vienna (Austria). Compared to other equipment I have used, the NanoWizard® is extremely user friendly. It is very intuitive, once the working principle of atomic force microscopy is clear. The variety of modes available, included the quantitative imaging (QI™) mode, allows the user to acquire a large variety of data on a sample. While working with living cells, it is crucial to control the temperature setting and the JPK PetriDishHeater™ is reliable and easy to use. The software for the post-processing of data is also very easy to use and quite automatic. So overall, I think that working with JPK’s AFM has guaranteed a high degree of reliability of my observations.”

This work has been published in a review article in Seminars in Cell & Development Biology published by Elsevier in 2017. The group has also published an interesting paper where the AFM is used to monitor the beating of cardiomyocytes grown on a 3D carbon nanotube scaffold. The lead author is Dr Brisa Peńa and is published in the ACS' Applied Materials & Interfaces. It may be viewed here.

For more details about JPK’s AFM systems and their applications for the materials, life & nano sciences, please contact JPK on +49 30726243 500. Alternatively, please visit the web site: http://www.jpk.com/ or see more on Facebook: www.jpk.com/facebook and on You Tube: http://www.youtube.com/jpkinstruments.

References
Lui et al, Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site, NATURE COMMUNICATIONS | 7:10714 | DOI: 10.1038/ncomms10714

Ramalho et al, Analysis of the mechanical properties of wild type and hyperstable mutants of the HIV‑1 capsid, Retrovirology (2016) 13:17 DOI 10.1186/s12977-016-0250-4

Rankovic et al, Reverse Transcription Mechanically Initiates HIV-1 Capsid Disassembly, J Virol 91:e00289-17. https://doi.org/10.1128/JVI.00289-17 .

####

About JPK Instruments
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK’s success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo, Shanghai (China), Paris (France) and Carpinteria (USA), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.

For more information, please click here

Contacts:
JPK Instruments AG
Colditzstrasse 34-36
Haus 13, Eingang B
Berlin 12099
Germany
T +49 30726243 500
F +49 30726243 999
http://www.jpk.com/


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA UK
T +44(0)1799 521881
M +44(0)7843 012997

www.talking-science.com.

Copyright © JPK Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project