Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > The molecular mechanism that blocks membrane receptors has been identified: The work in which the Ikerbasque researcher of the Biofisika Institute Xabier Contreras has participated has been published in the journal Cell

The activation of the intracellular signalling of the IFN-gR receptor depends on the lipid nanodomains present in the membrane. The alteration of these nanodomains or the presence of a single mutation in the receptor induces galectin binding. The receptor ends up trapped in the actin filaments and cell signalling is blocked.
CREDIT
Instituto Biofisika (UPV/EHU, CSIC)
The activation of the intracellular signalling of the IFN-gR receptor depends on the lipid nanodomains present in the membrane. The alteration of these nanodomains or the presence of a single mutation in the receptor induces galectin binding. The receptor ends up trapped in the actin filaments and cell signalling is blocked. CREDIT Instituto Biofisika (UPV/EHU, CSIC)

Abstract:
The study began by taking the medical history of 11 children, all of whom had a disorder due to mycobacteria infections, as the basis. All were discovered to have the same phenotype with the same mutation, which was located in the interferon-gamma (IFNGR) receptor, so the group began to explore what was causing this dysfunction.

The molecular mechanism that blocks membrane receptors has been identified: The work in which the Ikerbasque researcher of the Biofisika Institute Xabier Contreras has participated has been published in the journal Cell

Leioa, Bizkaia | Posted on October 27th, 2016

The cell membrane can be likened to an ocean, a sea consisting mainly of lipids and proteins, in which there are islands made up of specific lipids such as cholesterol and sphingolipids. The membrane proteins are located on the islands and can only perform their function in these nanodomains.

The IFNGR receptor is one of these membrane proteins and undertakes to activate genes involved in a huge variety of cell processes, including defence against pathogens and cancer. The team discovered that a simple mutation in the chain of 337 aminoacids that form it allows a sugar to be added. This sugar is recognised by a protein in the family of extracellular proteins known as galectins. When that protein is added to the receptor, the receptor gets taken out of its nanodomain and becomes caught up in the actin filaments that form the cell's cytoskeleton. Once outside its nanodomain, the receptor becomes blocked and can no longer transmit the signal.

"The research provides direct evidence on the fundamental role that certain lipid nanodomains play in the activation and regulation of cell signalling mediated by the IFNGR receptor. What is more, the results of this work stress the need to study the interaction between galectins and highly glycosylated membrane receptors and the link with various congenital diseases," pointed out Xabier Contreras. The study is also offering possible therapeutic targets for treating patients who are carriers of the IFNGR receptor mutation.

####

For more information, please click here

Contacts:
Matxalen Sotillo

34-688-673-770

Copyright © University of Basque Country

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Bibliographical reference

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project