Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Syracuse University chemists add color to chemical reactions: Chemists in the College of Arts and Sciences have come up with an innovative new way to visualize and monitor chemical reactions in real time

A photo timeline of reaction monitoring using perovskite fluorescence.
CREDIT: Syracuse University News Services
A photo timeline of reaction monitoring using perovskite fluorescence.

CREDIT: Syracuse University News Services

Abstract:
Chemists at Syracuse University have come up with an innovative new way to visualize and monitor chemical reactions in real time.

Syracuse University chemists add color to chemical reactions: Chemists in the College of Arts and Sciences have come up with an innovative new way to visualize and monitor chemical reactions in real time

Syracuse, NY | Posted on May 19th, 2016

Members of the Maye Research Group in the Department of Chemistry have designed a nanomaterial that changes color when it interacts with ions and other small molecules during a chemical reaction.

The subject of an article in ACS Nano (American Chemical Society, 2016), their discovery enables researchers to monitor reactions qualitatively with the naked eye and quantitatively with simple instrumentation.

"In many cases, a chemical reaction between molecules occurs in a solution that is colorless and transparent or looks like a milky suspension," says Mathew Maye, associate professor of chemistry and the experiment's team leader. "The only way to know if a reaction has occurred or not is to perform extensive analysis after a multi-step purification."

In an attempt to figure out why and how fast a reaction occurs (if at all), the group has designed a nanoparticle that reacts with byproducts of the reaction. "When the reactions occurs, the nanoparticle fluoresces at a different color, allowing us to gauge kinetics by eye, instead of with a million-dollar spectrometer," Maye says.

Central to the group's work is an emerging class of nanomaterials called perovskites. A perovskite is a special class of crystal, typically made up of metal ions and oxygen. The group's perovskites are composed of metal ions and a halide.

At the nanoscale, perovskites are photo-luminescent, meaning that they emit light when "excited" by a laser or lamp. That the colors they emit are determined, in part, by their ion concentrations makes perovskites unique among nanomaterials.

It also makes them ripe for application. Research groups in industry and academia see potential for perovskites in solar cells, light-emitting diodes, lasers and photo detectors.

Tennyson Doane, a post-doctoral researcher in the group, is the article's co-corresponding author with Maye. "We knew about the potential of these materials in energy research," Doane says. "We are interested in energy as well, and had this crazy idea of trying to use the ion concentration ratios of perovskites to detect ions in solution, and then perhaps monitor the chemical reaction, which is very difficult to do. We had no idea if it would work or not, so we just decided to go for it."

The group started by working with a very simple system that involved organic reactions of molecules called organohalides. When these molecules react, often forming carbon-carbon double bonds in what is known as an elimination reaction, the halide is released. (The halide is a bromine, chlorine or iodine ion.) Typically, the halide is an unimportant side-product of the reaction, until now.

"Our technology allows us to accurately detect the halide release," says Kevin Cruz '18, a chemistry major and co-author of the article. "When the reaction starts, the perovskite fluoresces bright red. As the halide is released, or exchanged in the chemical reaction, our particle absorbs it, and the fluorescence color changes proportionally to the halide concentration--from red to orange to yellow to green. When the color is green, the reaction is over."

Explains Doane: "Added to that is the fact that the perovskite concentration is very low, you just have to add a small amount to the reaction for observation. We have been able to calibrate the system very accurately, and from that can measure chemical kinetics in a new 'colorimetric' way."

Maye offers nothing but praise for Doane and Cruz, stating that what they have accomplished in a short amount of time and on a small budget is "amazing."

"No one, right now, is thinking about monitoring a chemical reaction this way," Maye adds. "Our team is able to measure very precise chemical kinetics by monitoring the color change with nothing more than an ultraviolet lightbulb or a cheap fluorescence spectrometer."

In addition to Doane, Cruz and Maye, the article was co-written by Kayla Ryan G'15, Ph.D. student Laxmikant Pathade and Huidong Zang and Mircea Cotlet at the Center for Functional Nanomaterials at Brookhaven National Laboratory, each of whom made important measurements in the study.

The group's technology is patent-pending at the University. Maye says they are testing the approach's applicability to a wide library of chemical reactions and its effectiveness at measuring low concentrations of ions and reactive molecules.

"Who knows, maybe in the future, every chemist will use a Syracuse-based perovskite for monitoring their reactions," he adds.

####

For more information, please click here

Contacts:
Rob Enslin

315-443-9038

Copyright © Syracuse University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project