Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density

Pacific Northwest National Laboratory has developed a new electrolyte that allows lithium-sulfur, lithium-metal and lithium-air batteries to operate well without growing dendrites, tiny pin-like fibers that short-circuit rechargeable batteries. Shown here are two scanning electron microscope images that illustrate how a traditional electrolyte can cause dendrite growth (a, left), while PNNL's new electrolyte instead causes the growth of smooth nodules that don't short-circuit batteries (b, right).
CREDIT: PNNL
Pacific Northwest National Laboratory has developed a new electrolyte that allows lithium-sulfur, lithium-metal and lithium-air batteries to operate well without growing dendrites, tiny pin-like fibers that short-circuit rechargeable batteries. Shown here are two scanning electron microscope images that illustrate how a traditional electrolyte can cause dendrite growth (a, left), while PNNL's new electrolyte instead causes the growth of smooth nodules that don't short-circuit batteries (b, right).

CREDIT: PNNL

Abstract:
Dendrites - the microscopic, pin-like fibers that cause rechargeable batteries to short circuit - create fire hazards and can limit the ability of batteries to power our smart phones and store renewable energy for a rainy day.

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density

Richland, WA | Posted on February 24th, 2015

Now a new electrolyte for lithium batteries that's described in Nature Communications eliminates dendrites while also enabling batteries to be highly efficient and carry a large amount of electric current. Batteries using other dendrite-limiting solutions haven't been able to maintain both high efficiencies and current densities.

"Our new electrolyte helps lithium batteries be more than 99 percent efficient and enables them to carry more than ten times more electric current per area than previous technologies," said physicist Ji-Guang "Jason" Zhang of the Department of Energy's Pacific Northwest National Laboratory. "This new discovery could kick-start the development of powerful and practical next-generation rechargeable batteries such as lithium-sulfur, lithium-air and lithium-metal batteries."

Battery 101

Most of the rechargeable batteries used today are lithium-ion batteries, which have two electrodes: one that's positively charged and contains lithium and another, negative one that's typically made of graphite. Electricity is generated when electrons flow through a wire that connects the two. To control the electrons, positively charged lithium atoms shuffle from one electrode to the other through another path: the electrolyte solution in which the electrodes sit. But graphite has a low energy storage capacity, limiting the amount of energy a lithium-ion battery can provide smart phones and electric vehicles.

When lithium-based rechargeable batteries were first developed in the 1970s, researchers used lithium for the negative electrode, which is also known as an anode. Lithium was chosen because it has ten times more energy storage capacity than graphite. Problem was, the lithium-carrying electrolyte reacted with the lithium anode. This caused microscopic lithium dendrites to grow and led the early batteries to fail.

Many have tweaked rechargeable batteries over the years in an attempt to resolve the dendrite problem. In the early 1990s, researchers switched to other materials such as graphite for the anode. More recently, scientists have also coated the anode with a protective layer, while others have created electrolyte additives. Some solutions eliminated dendrites, but also resulted in impractical batteries with little power. Other methods only slowed, but didn't stop, the fiber's growth.

Concentrated secret sauce

Thinking today's rechargeable lithium-ion batteries with graphite anodes could be near their peak energy capacity, PNNL is taking another look at the older designs. Zhang and his team sought to develop an electrolyte that worked well in batteries with a high-capacity lithium anode. They noted others had some success with electrolytes with high salt concentrations and decided to use large amounts of the lithium bis(fluorosulfonyl)imide salt they were considering. To make the electrolyte, they added the salt to a solvent called dimethoxyethane.

The researchers built a circular test cell that was slightly smaller than a quarter. The cell used the new electrolyte and a lithium anode. Instead of growing dendrites, the anode developed a thin, relatively smooth layer of lithium nodules that didn't short-circuit the battery.

After 1,000 repeated charge and discharge cycles, the test cell retained a remarkable 98.4 percent of its initial energy while carrying 4 milliAmps of electrical current per square centimeter of area. They found greater current densities resulted in slightly lower efficiencies. For example, a current density as high as 10 milliAmps per square centimeter, the test cell maintained an efficiency of more than 97 percent. And a test cell carrying just 0.2 milliAmps per square centimeter achieved a whopping 99.1 percent efficiency. Most batteries with lithium anodes operate at a current density of 1 milliAmps per square centimeter or less and fail after less than 300 cycles.

Anode-free battery?

The new electrolyte's remarkably high efficiency could also open the door for an anode-free battery, Zhang noted. The negative electrodes in today's batteries actually consist of thin pieces of metal such as copper that are coated in active materials such as graphite or lithium. The thin metal bases are called current collectors, as they are what keep electrons flowing to power our cell phones. Active materials have been needed to coat the electrodes because, so far, most electrolytes have been inefficient and continue to consume lithium ions during battery operation. But an electrolyte with more than 99 percent efficiency means there's potential to create a battery that only has a negative current collector, without an active material coating, on the anode side.

"Not needing an anode could lower the cost and size of rechargeable batteries and would also significantly improve the safety of these batteries," Zhang said.

The electrolyte needs to be refined before it's ready for mainstream use, however. Zhang and his colleagues are evaluating various additives to further enhance their electrolyte so a lithium battery using it could achieve more than 99.9 percent efficiency, a level that's needed for commercial adoption. They are also examining which cathode materials would work best in combination with their new electrolyte.

###

To analyze battery material performance, the researchers used advanced techniques such as a scanning electron microscopy and X-ray photoelectron spectroscopy at EMSL, the Environmental Molecular Sciences Laboratory, a DOE Office of Science national user facility at PNNL. They also performed molecular dynamic simulations with the help of the Army Research Laboratory. Funding for the project was provided by the Joint Center for Energy Storage Research through DOE's Office of Science.

####

About PNNL
Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. Founded in 1965, PNNL employs 4,300 staff and has an annual budget of more than $1 billion. It is managed by Battelle for the U.S. Department of Energy's Office of Science. As the single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information on PNNL, visit the PNNL News Center, or follow PNNL on Facebook, Google+, LinkedIn and Twitter.

EMSL, the Environmental Molecular Sciences Laboratory, is a national scientific user facility sponsored by the Department of Energy's Office of Science. Located at Pacific Northwest National Laboratory in Richland, Wash., EMSL offers an open, collaborative environment for scientific discovery to researchers around the world. Its integrated computational and experimental resources enable researchers to realize important scientific insights and create new technologies. Follow EMSL on Facebook, LinkedIn and Twitter.

The Joint Center for Energy Storage Research (JCESR) is a major partnership that integrates researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology. Led by the U.S. Department of Energy's Argonne National Laboratory, partners include national leaders in science and engineering from academia, the private sector, and national laboratories. Their combined expertise spans the full range of the technology-development pipeline from basic research to prototype development to product engineering to market delivery. Funding for JCESR is provided by the U.S. Department of Energy Office of Science.

For more information, please click here

Contacts:
Franny White

509-375-6904

Copyright © PNNL

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

REFERENCE: Jiangfeng Qian, Wesley A. Henderson, Wu Xu, Priyanka Bhattacharya, Mark Engelhard, Oleg Borodin & Ji-Guang Zhang, "High Rate and Stable Cycling of Lithium Metal Anode," Nature Communications, doi:10.1038/ncomms7362, Feb. 20, 2015:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project