Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > University of Electro-Communications research: High density quantum dots for powerful solar cells

Abstract:
The September 2014 issue of the University of Electro-Communications e-Bulletin includes research highlights on self-organized indium arsenide quantum dots for solar cells; silicon nanophotonics; solutions to internet congestion; and humanizing robots.

University of Electro-Communications research: High density quantum dots for powerful solar cells

Tokyo, Japan | Posted on September 25th, 2014

Feature article

Koichi Yamaguchi

Nanotechnology for real world applications: Self-organized indium arsenide quantum dots for solar cells

www.ru.uec.ac.jp/e-bulletin/feature/2014/self-organized-indium-arsenide-quantum-dots-for-solar-cells.html

Kouichi Yamaguchi is internationally recognized for his pioneering research on the fabrication and applications of 'semiconducting quantum dots' (QDs). "We exploit the 'self-organization' of semiconducting nanocrystals by the 'Stranski-Krasnov (SK) mode of crystal growth for producing ordered, highly dense, and highly uniform quantum dots," explains Yamaguchi. "Our 'bottom-up' approach yields much better results than the conventional photolithographic or 'top-down' methods widely used for the fabrication of nano-structures."

InAs QD density: 1.0×1012 cm-2

Research Highlights

Silicon nanophotonics: controlling photoluminescence for better devices

www.ru.uec.ac.jp/e-bulletin/research-highlights/2014/controlling-photoluminescence-for-better-devices.html

Okuno and his colleagues fabricated silicon nanowire arrays by metal-assisted chemical etching, an approach that is simple and cost-effective.

Micromanipulators: Taking the future in hand

www.ru.uec.ac.jp/e-bulletin/research-highlights/2014/taking-the-future-in-hand.html

Now, Sungwan Boksuwan and co-workers at the University of Electro-Communications in Tokyo, together with scientists in Thailand, have created a new robust two-dimensional handheld micromanipulator for use in cell manipulation.

Depth perception - understanding ambiguities

www.ru.uec.ac.jp/e-bulletin/research-highlights/2014/depth-perception-understanding-ambiguities.html

Binocular vision allows us to gauge depth. For example a dot directly ahead of the left eye will be at an angle to the right that decreases with distance. So how, ask Eiichi Mitsukura and Shunji Satoh at the University of Electro-Communications in Tokyo, can we estimate the depth of black or white paper? With no pattern or texture on the paper there should be no way of determining its contours. They turned to the computational tools used for filling in blind spots for an answer.

nternet protocol networks: Optimizing link reinforcements

http://www.ru.uec.ac.jp/e-bulletin/research-highlights/2014/optimizing-link-reinforcements.html

At any given moment in time, a network can be represented by a series of nodes and links. Each link is given a 'weight' - a measure of the link's quality of service. The aim of an internet engineer is to keep the links as uncongested as possible, allowing as much data as possible to flow freely at any one time.

Topics

Intelligent robots as models for studying human communication

www.ru.uec.ac.jp/e-bulletin/topics/2014/intelligent-robots-as-models-for-studying-human-communication.html

Visions of reality: Insights into information processing by the brain
www.ru.uec.ac.jp/e-bulletin/topics/2014/insights-into-information-processing-by-the-brain.html

####

About University of Electro-Communications
The University of Electro-Communications (UEC) in Tokyo is a small, luminous university at the forefront of applied sciences, engineering, and technology research. Its roots go back to the Technical

Institute for Wireless Commutations, which was established in 1918 by the Wireless Association to train so-called wireless engineers in maritime communications in response to the Titanic disaster in 1912. In 1949, the UEC was established as a national university by the Japanese Ministry of Education,and moved in 1957 from Meguro to its current Chofu campus Tokyo.

With approximately 4,000 students and 350 faculty, UEC is regarded as a small university, but with particular expertise in wireless communications, laser science, robotics, informatics, and material science, to name just a few areas of research.

The UEC was selected for the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Program for Promoting the Enhancement of Research Universities as a result of its strengths in three main areas: optics and photonics research, where we are number one for the number of joint publications with foreign researchers; wireless communications, which reflects our roots; and materials-based research, particularly on fuel cells.

For more information, please click here

Contacts:
International Public Relations
The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585

Website: http://www.uec.ac.jp/

Copyright © University of Electro-Communications

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Quantum Dots/Rods

A new kind of magnetism November 17th, 2023

IOP Publishing celebrates World Quantum Day with the announcement of a special quantum collection and the winners of two prestigious quantum awards April 14th, 2023

Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project