Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ultra-short pulse lasers & Positioning

Abstract:
Applications in basic research, medical science and industry
Ultra-short pulsed lasers are no longer used mainly in the laboratories of basic researchers. They are an important part in the industry for cutting, surface finishing and pattern recognition and also in medical science. In medical science amongst others they are in place for the detection of cancer cells.

Ultra-short pulse lasers & Positioning

Jena, Germany | Posted on August 21st, 2014

Specialized microscopes combined with the ultra-short pulse laser reach a higher resolution. Therefore it is possible to differ healthy cells from cancer cells.

Definition of the project
In an experimental set-up (please see figure 1) for the generation of high energy ultra-short pulsed lasers lithographically produced gratings need to be adjusted within a few nanometers each to another. These gratings decompose and assemble the laser spectrally. The adjusting degree of freedom needs to be smaller than 70 nm or 80 µrad. Where the adjustable mass can weigh up to 20 kg (44 lbs), a 5-axis control (3 rotary and 2 translational axes) is necessary to adjust the laser under these conditions. Because of the control it is possible to monitor the position of each degree of freedom. The reached position has to be long-term stable with uncertainties of a few nanometers. Otherwise a modular set-up is required.
In an experimental set-up with a hexapod system these specifications could not be achieved. Hexapod systems allow an easy multidimensional adjustment but the long term stability in nanometer scale is very difficult. In consequence the customer decided against the hexapod solution.
To reach the required long term stability the new solution from piezosystem jena is very compact. In a first work step all the 5 axes can be positioned within single figure microns. Based on the accuracy of the first positioning piezo actuators with a high stiffness and stability but small motion can be used for fine tuning. The solution is well suited to build in a modular way.

Basic advantages of the adjusting device
• very stable design with temperature-adjusted substrate to the grating (please see figure 2)
• rough positioning up to the lowest µm-level, the rough positioning is already calibrated
• fine positioning with preloaded piezo actuators
• punctual tensile and pressure forces provide that no tensions influence the grating
• piezo actuators are operated approximately with 25% of the maximal stroke
• long lasting life time
• sufficient control reserve available
• usage of common drives and the related controller
• fulfils requirements for a cost-effective scalability

Controlled motions of single figure nanometers have been tested and confirmed in a first laboratory set-up (figure 3, table 1). With an active adjustment control these parameters can theoretically be hold for an infinite time. Single steps scaled down to 1 nanometer could be realized without any risk.

Summary
In comparison to the hexapod system the long term stability and the step width could be clearly improved by the use of piezosystem jena grating adjustment system. The redesigned arrangement of the positioning components leads to a compact design with a high stiffness. The improved grating adjustment system is less sensitive to external influences because of the compact design and the used materials. All requirements in regard to the positioning and the long term stability could be fulfilled.

####

For more information, please click here

Contacts:
Theresa Kuntze

Copyright © Piezosystem Jena GmbH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project