Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New catalyst offers a more affordable way to produce hydrogen from seawater

(Photo courtesy: Getty Images)
(Photo courtesy: Getty Images)

Abstract:
Hydrogen has drawn attention in recent years as a potential source of clean energy because it burns without producing climate-damaging emissions. However, traditional hydrogen production methods have a substantial carbon footprint, and cleaner methods are expensive and technically complex.

New catalyst offers a more affordable way to produce hydrogen from seawater

Houston, TX | Posted on September 9th, 2022

Now researchers are reporting a significant advance, a two-electrode catalyst that relies on one compound to efficiently produce hydrogen and oxygen from both seawater and freshwater. Previous attempts at such bi-functional catalysts to split water into hydrogen and oxygen have generally resulted in poor performance in one of the two functions. Using two separate catalysts works but increases the catalysts’ manufacturing cost.

In work described in Energy & Environmental Science, researchers from the University of Houston, the Chinese University of Hong Kong and Central China Normal University report using a nickel/molybdenum/nitrogen compound, tweaked with a small amount of iron and grown on nickel foam to efficiently produce hydrogen and then, through a process of electrochemical reconstruction sparked by cycling voltage, converted to a compound that produced a similarly powerful oxygen evolution reaction.

The researchers said using a single compound for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) – albeit slightly changed through the reconstruction process – not only makes water splitting more affordable, it also simplifies the engineering challenges.

Most materials are best suited for either HER or OER, but both reactions are required to complete the chemical reaction and produce hydrogen from water. Zhifeng Ren, director of the Texas Center for Superconductivity at UH and a corresponding author for the paper, said the new catalyst not only allows for efficient operations with a single catalyst but also works equally well in seawater and freshwater. “Compared with existing catalysts, this is on par with the best ever reported,” he said.

Using alkaline seawater and operating under quasi-industrial conditions, the catalyst delivered a current density of 1,000 milliamps/centimeter squared using just 1.56 volts in seawater, remaining stable for 80 hours of testing.

The catalyst’s strong performance in seawater could solve a problem: most available catalysts work best in freshwater. Splitting seawater is more complicated, in part because of corrosion associated with the salt and other minerals. Ren, who is also M.D. Anderson Chair Professor of Physics at UH, said the new catalyst also generates pure oxygen, avoiding the potential byproduct of corrosive chlorine gas produced by some catalysts.

But supplies of freshwater are increasingly limited by drought and population growth. Seawater, in contrast, is abundant. “Normally, even if a catalyst works for salty water, it requires a higher energy consumption,” Ren said. “In this case, requiring almost the same energy consumption as freshwater is very good news.”

Shuo Chen, associate professor of physics at UH and co-corresponding author on the paper, said the catalyst’s reported strong current density at a relatively low voltage lowers the energy cost of producing hydrogen. But that’s just one way the catalyst addresses affordability, said Chen, who is also a principal investigator with TcSUH.

By using one material – the iron-tweaked nickel/molybdenum/nitrogen compound – for the HER and then using cycling voltage to trigger an electrochemical reconstruction to produce a slightly different material, an iron-oxide/molybdenum/nickel oxide, for the OER, researchers eliminate the need for a second catalyst while also simplifying engineering requirements, Chen said.

“If you are making a device with two different materials on two electrodes, you have to figure out how the electric charge can flow through each electrode and design the structure to fit that,” she said. “In this case, the material is not exactly the same, because one (electrode) undergoes electrochemical reconstruction, but it is a very similar material, so the engineering is easier.”

In addition to Ren and Chen, researchers on the paper include Minghui Ning, Fanghao Zhang, Libo Wu, Xinxin Xing, Dezhi Wang, Shaowei Song and Jiming Bao, all with UH; Qiancheng Zhou of Central China Normal University; and Luo Yu of the Chinese University of Hong Kong.

####

For more information, please click here

Contacts:
Chris Stipes
University of Houston

Office: 713-743-8186

Copyright © University of Houston

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Chemistry

New $1.25 million research project will map materials at the nanoscale: The work can lead to new catalysts and other compounds that could be applicable in a range of areas including quantum science, renewable energy, life sciences and sustainability October 28th, 2022

Liquid crystal templated chiral nanomaterials October 14th, 2022

Scientists count electric charges in a single catalyst nanoparticle down to the electron: Tenfold improvement in the sensitivity of electron holography reveals the net charge in a single platinum nanoparticle with a precision of just one electron, providing fundamental informatio October 14th, 2022

Wrapping of nanosize copper cubes can help convert carbon dioxide into other chemicals September 23rd, 2022

Possible Futures

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Discoveries

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Announcements

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

NIST’s grid of quantum islands could reveal secrets for powerful technologies November 18th, 2022

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

An on-chip time-lens generates ultrafast pulses: New device opens the doors to applications in communication, quantum computing, astronomy November 18th, 2022

Researchers at Purdue unlock light-matter interactions on sub-nanometer scales, leading to ‘picophotonics’ November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

How “2D” materials expand: New technique that accurately measures how atom-thin materials expand when heated could help engineers develop faster, more powerful electronic devices November 18th, 2022

Energy

Predicting the device performance of the perovskite solar cells from the experimental parameters through machine learning of existing experimental results November 18th, 2022

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022

Advances in thermoelectric power generation possible with various ‘metal chalcogenide’ materials, recent review shows November 4th, 2022

Research partnerships

New insights into energy loss open doors for one up-and-coming solar tech November 18th, 2022

New hybrid structures could pave the way to more stable quantum computers: Study shows that merging a topological insulator with a monolayer superconductor could support theorized topological superconductivity October 28th, 2022

“Kagome” metallic crystal adds new spin to electronics October 28th, 2022

New measurements quantifying qudits provide glimpse of quantum future October 14th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project