Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Study reveals new mode of triggering immune responses

Confocal microscopy image shows that DNA (green) and the chemokine CXCL4 (red) colocalize (indicated by yellow areas) during inflammatory responses in the skin.
CREDIT
Barrat lab
Confocal microscopy image shows that DNA (green) and the chemokine CXCL4 (red) colocalize (indicated by yellow areas) during inflammatory responses in the skin. CREDIT Barrat lab

Abstract:
Small proteins, called chemokines, that direct immune cells toward sites of infection can also form DNA-bound nanoparticles that can induce chronic, dysfunctional immune responses, according to a new study by researchers at Weill Cornell Medicine and Hospital for Special Surgery (HSS). The surprising discovery of this new activity for this well-studied class of immune signaling molecules could shed light on some types of immune disorders.

Study reveals new mode of triggering immune responses

New York, NY | Posted on July 15th, 2022

The study, published May 31 in the Journal of Experimental Medicine, reveals an entirely new mode of triggering the immune system, through which chemokine-DNA nanoparticles can induce inflammation. Results in preclinical models suggest that this mechanism may play a central role in autoimmune diseases such as scleroderma and lupus.

The work was part of the scientists' ongoing efforts to understand scleroderma, an autoimmune condition that causes inflammation and hardening of the skin. “We had a project looking at scleroderma and it was shown by us and others a few years ago that patients with this condition have an elevated level of the chemokine CXCL4 in their blood,” said senior author Dr. Franck Barrat, professor of microbiology and immunology at Weill Cornell Medicine and the Michael Bloomberg Chair and senior scientist at HSS. “But the role of this chemokine in disease is unclear and we didn’t expect the chemokine to provoke this particular immune response.”

In setting up controls for one of their experiments, Dr. Barrat’s team, including first author, Dr. Yong Du, a postdoctoral associate in microbiology and immunology at Weill Cornell Medicine and a member of the HSS Research Institute, discovered that CXCL4 and several other chemokines could induce immune cells called plasmacytoid dendritic cells (pDCs) to produce interferon-alpha. Surprisingly, the induction appeared to be independent of known chemokine receptors, indicating that these molecules were activating the immune cells through some previously unknown mechanism.

Subsequent experiments revealed that the chemokines can bind pieces of DNA to form nanoparticles, which then bypass the cells’ chemokine receptors to induce interferon production directly. Tests in mouse models of skin inflammation suggest that this mechanism could account for the chronic immune activation that underlies scleroderma and other autoimmune diseases. The results also suggest that different DNA-chemokine nanoparticles could underlie different diseases. For example, while CXCL4 appears to be important in scleroderma, another chemokine, CXCL10, may perform a similar function in lupus.

Dr. Barrat believes that the DNA-chemokine nanoparticles are likely an essential component of the body’s wound healing system. “Following a skin injury, such as if you cut yourself, dendritic cells infiltrate the skin and create an inflammatory environment to allow for proper closing of the wound. Our findings suggest that these cells do not need to see a pathogen—a virus or bacterium—and can directly sense self-DNA,” he said. “And that inflammation is helping to recruit other cells of the immune system.” In autoimmune disease, the process goes awry, producing a chronic inflammatory state that ultimately damages tissue instead of healing it.

The researchers also collaborated on a related study, published June 14 in Nature Communications, that shows that CXCL4 can induce a similar inflammatory response in monocytes, another important class of immune cells. Taken together, the findings point toward possible strategies to shut down autoimmunity without interfering with normal immune responses.

“It tells you the type of response that you have to stop, not necessarily at the DNA-chemokine level, but potentially more downstream in the cells themselves,” Dr. Barrat said.

####

For more information, please click here

Contacts:
Eliza Powell
Weill Cornell Medicine

Copyright © Weill Cornell Medicine

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Study:

Related News Press

News and information

Drawing data in nanometer scale September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Possible Futures

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Nanomedicine

Cleveland researchers reveal new strategy to prevent blood clots without increasing the risk of bleeding: University Hospitals and Case Western Reserve University findings may be especially impactful for cancer patients who experience blood clot complications September 30th, 2022

Georgia State researchers discover novel way to treat IBD with lipid nanoparticles August 26th, 2022

Engineers fabricate a chip-free, wireless electronic “skin”: The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

Immune system: First image of antigen-bound T-cell receptor at atomic resolution: Antigen binding does not trigger any structural changes in T-cell receptors – Signal transduction probably occurs after receptor enrichment August 19th, 2022

Discoveries

Surface microstructures of lunar soil returned by Chang’e-5 mission reveal an intermediate stage in space weathering process September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

Announcements

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Conformal optical black hole for cavity September 30th, 2022

Cleveland researchers reveal new strategy to prevent blood clots without increasing the risk of bleeding: University Hospitals and Case Western Reserve University findings may be especially impactful for cancer patients who experience blood clot complications September 30th, 2022

Ultrasmall VN/Co heterostructure with optimized N active sites anchored in N-doped graphitic nanocarbons for boosting hydrogen evolution September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

Nanobiotechnology

Cleveland researchers reveal new strategy to prevent blood clots without increasing the risk of bleeding: University Hospitals and Case Western Reserve University findings may be especially impactful for cancer patients who experience blood clot complications September 30th, 2022

Georgia State researchers discover novel way to treat IBD with lipid nanoparticles August 26th, 2022

Rice team eyes cells for sophisticated data storage: National Science Foundation backs effort to turn living cells into equivalent of computer RAM August 19th, 2022

Engineers fabricate a chip-free, wireless electronic “skin”: The device senses and wirelessly transmits signals related to pulse, sweat, and ultraviolet exposure, without bulky chips or batteries August 19th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project