Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Crystal phase engineering offers glimpse of future potential, researchers say

With two decades of focused attention on how regulating such rearrangements, a process called phase engineering may enable sustainable energy conversion processes.
CREDIT
Nano Research, Tsinghua University Press
With two decades of focused attention on how regulating such rearrangements, a process called phase engineering may enable sustainable energy conversion processes. CREDIT Nano Research, Tsinghua University Press

Abstract:
Atomic rearrangement changes a material’s physical and chemical properties, which may lead to potential applications across disciplines, including in sustainable energy. With two decades of focused attention on how regulating such rearrangements, a process called phase engineering, may enable sustainable energy conversion processes, researchers in China have summarized the work so far, including how the field might progress.

Crystal phase engineering offers glimpse of future potential, researchers say

Beijing, China | Posted on July 15th, 2022

They published their review on July 11 in Nano Research, with a specific focus on electrocatalysts. These materials trigger, enhance or resolve the chemical and electrical reactions involved in converting energy into storable or usable formats. They often serve as an electrode or as an electrode component.



“Phase engineering is an important strategy for designing efficient electrocatalysts toward these energy conversions, because it enables all catalytically active atoms to rearrange and form new lattices,” said co-corresponding author Xiaoxin Zou, professor, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University. “This provides great opportunity to rationally manipulate atoms to discover attractive structural frameworks and to achieve better electrocatalysis. And while, in recent years, several researchers have summarized the preparation of nanomaterials with novel arrangements, this is the first systematic review toward rationalizing how these phases influence electrocatalytic activity.”



These various atomic arrangements are known as crystal phases. By changing how the atoms are arranged on the surface of a solid material, or in its bulk, can drastically change what the material can do. Zou noted, however, that the surface is essentially an extension of the bulk and cannot exist independently, so their connection is key to developing desirable and stable electrocatalysts.



“The underlying logic of phase engineering lies in an intimate relationship between the properties of the surface and of the bulk of a catalyst,” Zou said. “Engineering the bulk phase of a catalyst, which directly influences the surface, is a powerful strategy to design smart catalysts both internally and externally.”



The crystal structure of the bulk determines the material’s electronic structure, its conductivity and, largely, the composition of the surface layer. Different bulk crystal structures possess different characteristics and surface energies, leading to diverse morphology and catalytically active sites. Even for catalysts that experience significant surface damage or reconstruction during the catalysis process, Zou said, the bulk’s initial crystal structure strongly influences reconstitution and the final structure of the surface.



Over the last 20 years, several researchers have investigated this relationship, exploring unconventional electrocatalytic phases and how to induce such transformations. Driven by the demand for sustainable energy conversion processes, such as nitrogen fixation and carbon dioxide reduction, researchers advanced characterization techniques, as well as the theory underlying experimental work.



“These things made it possible to precisely and accurately understand the effects of crystal phases on electrocatalytic performance,” Zou said. "So, it is time to summarize phase engineering-related research that helps unravel phase-performance relationships and refines prediction in electrocatalysis studies.”



Next, Zou and his team recommend that researchers pursue four main areas to further advance crystal phase engineering for catalysis research.



“To develop competent catalysts for different energy conversion processes from a phase focus, we propose exploring the relationship between the crystal phase and catalytic activity levels; combining phase engineering with other design strategies; unraveling the formation and evolution mechanisms of unconventional phases; and enriching catalytic research of more fluid phases,” Zou said.



Contributors include Hui Chen, Mingcheng Zhang, Ke Sun, Lina Wang, Zhoubing Xie, Yucheng Shen, Xindi Han and Lan Yang, State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University; and Yanfei Wang, Petrochina Petrochemical Research Institute.



The National Natural Science Foundation of China, the Jilin Province Science and Technology Development Plan, the Science and Technology Research Program of Education Department of Jilin Province and the 111 Project supported this research.

####

About Tsinghua University Press
Nano Research is a peer-reviewed, international and interdisciplinary research journal, sponsored by Tsinghua University and the Chinese Chemical Society. It offers readers an attractive mix of authoritative and comprehensive reviews and original cutting-edge research papers. After more than 10 years of development, it has become one of the most influential academic journals in the nano field. Rapid review to ensure quick publication is a key feature of Nano Research. In 2022 InCites Journal Citation Reports, Nano Research has an Impact Factor of 10.269 (9.136, 5 years), the total cites reached 29620, ranking first in China's international academic journals, and the number of highly cited papers reached 120, ranked among the top 2.8% of over 9000 academic journals.



About SciOpen



SciOpen is a professional open access resource for discovery of scientific and technical content published by the Tsinghua University Press and its publishing partners, providing the scholarly publishing community with innovative technology and market-leading capabilities. SciOpen provides end-to-end services across manuscript submission, peer review, content hosting, analytics, and identity management and expert advice to ensure each journal’s development by offering a range of options across all functions as Journal Layout, Production Services, Editorial Services, Marketing and Promotions, Online Functionality, etc. By digitalizing the publishing process, SciOpen widens the reach, deepens the impact, and accelerates the exchange of ideas.

For more information, please click here

Contacts:
Yao Meng
Tsinghua University Press

Office: 86-108-347-0574

Copyright © Tsinghua University Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Drawing data in nanometer scale September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Chemistry

Wrapping of nanosize copper cubes can help convert carbon dioxide into other chemicals September 23rd, 2022

New catalyst offers a more affordable way to produce hydrogen from seawater September 9th, 2022

Understanding outsize role of nanopores: New research reveals differences in pH, and more, about these previously mysterious environments August 26th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Govt.-Legislation/Regulation/Funding/Policy

Drawing data in nanometer scale September 30th, 2022

New technique allows researchers to scrape beyond the surface of nanomaterials: Using a new secondary-ion mass spectrometry technique, research are getting a fresh look at MXenes and MAX phases September 23rd, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Heat-resistant nanophotonic material could help turn heat into electricity: The key to beating the heat is degrading the materials in advance September 23rd, 2022

Possible Futures

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Discoveries

Surface microstructures of lunar soil returned by Chang’e-5 mission reveal an intermediate stage in space weathering process September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

Announcements

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Conformal optical black hole for cavity September 30th, 2022

Cleveland researchers reveal new strategy to prevent blood clots without increasing the risk of bleeding: University Hospitals and Case Western Reserve University findings may be especially impactful for cancer patients who experience blood clot complications September 30th, 2022

Ultrasmall VN/Co heterostructure with optimized N active sites anchored in N-doped graphitic nanocarbons for boosting hydrogen evolution September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Conformal optical black hole for cavity September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Modulating MoSe2 functional plane via doping-defect engineering strategy to develop conductive and electrocatalytic mediators in Li-S batteries September 23rd, 2022

Heat-resistant nanophotonic material could help turn heat into electricity: The key to beating the heat is degrading the materials in advance September 23rd, 2022

Research partnerships

Exquisitely thin membranes can slash energy spent refining crude oil into fuel and plastic: Queen Mary scientists have created a new type of nanomembrane that presents a less energy intensive way to fractionate hydrocarbons from crude oil September 30th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

New catalyst offers a more affordable way to produce hydrogen from seawater September 9th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project