Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Optical demonstration of quantum fault-tolerant threshold

a, Principle to implement physical qubits with the spatial modes of two entangled photons. And the experimental pattern on each photon is illustrated in b. Experimental results of the fault-tolerant circuits for the logical operation of single-qubit Hadamard gate are shown in c, and the results for the logical operations considering a following two-qubit controlled-not gate are shown in d. Fp and fp represents the success output probabilities for the encoded circuit and non-encoded circuit, respectively. The fault-tolerant manner is verified with Fp > fp.
CREDIT
by Kai Sun, Ze-Yan Hao, Yan Wang, Jia-Kun Li, Xiao-Ye Xu, Jin-Shi Xu, Yong-Jian Han, Chuan-Feng Li, Guang-Can Guo
a, Principle to implement physical qubits with the spatial modes of two entangled photons. And the experimental pattern on each photon is illustrated in b. Experimental results of the fault-tolerant circuits for the logical operation of single-qubit Hadamard gate are shown in c, and the results for the logical operations considering a following two-qubit controlled-not gate are shown in d. Fp and fp represents the success output probabilities for the encoded circuit and non-encoded circuit, respectively. The fault-tolerant manner is verified with Fp > fp. CREDIT by Kai Sun, Ze-Yan Hao, Yan Wang, Jia-Kun Li, Xiao-Ye Xu, Jin-Shi Xu, Yong-Jian Han, Chuan-Feng Li, Guang-Can Guo

Abstract:
It is of great importance to deal with experimental errors which could occur in every step of quantum circuits, especially in the implementation of quantum computation. Generally, as a straightforward thought to handle the errors, quantum error correction requires more qubits to accomplish the correction operation. However, the fault-tolerant method, in which logical qubits are encoded with several physical qubits and the error in the physical space is allowable and is not expected to be corrected, provides another way to treat the error by excluding the qubit with errors from the encoded space. To be more precise, based on the same hardware, logical qubits could be output with a better probability in the fault-tolerant encoded circuit than that in the non-encoded circuit when the error rate is below the threshold. More importantly, the fault-tolerant circuit could be verified in a small system consisting of several qubits. And the threshold, an explicit evidence to support the success of fault-tolerant method, could be determined when comparing the output probabilities of encoded circuits and non-encoded circuits.

Optical demonstration of quantum fault-tolerant threshold

Changchun, China | Posted on July 8th, 2022

In a new paper published in Light Science & Application, a team of scientists, led by Professor Chuan-Feng Li from CAS Key Laboratory of Quantum Information, University of Science and Technology of China, have exploited the spatial modes of two entangled photons to construct the experimental platform and have directly observed the fault-tolerant threshold for the investigated quantum circuits. With the physical qubits represented by coincident counts of the spatial modes of each photon, two logical qubits are encoded and manipulated through the corresponding operations on the physical qubits. Importing the error rate artificially with an extremely high accuracy, we could scan the range of error rate which covers the threshold. When the success output probability of encoded circuit is higher than that of non-encoded circuit, we can confirm the exact value of the threshold, which is supported by the strong results including the single-qubit and two-qubit operations in the logical space. Besides facilitating to investigate fault-tolerant quantum computation in scalable systems, this work is helpful for other quantum information tasks, such as entanglement purification and long-distance quantum communication.



With observing the error rate threshold, we could understand the detail framework of fault-tolerant protocols and judge the success of fault-tolerant manner with the prior information of error. These scientists summarize the performance of optical platform:

“We construct the setup based on the spatial modes of two photons which manifests the following advantages: (1) high-accuracy operation which is the rigid requirement of fault-tolerant circuit; (2) easy to import the artificial error and adjust its rate; (3) present the straight pattern of every step in the fault-tolerant process; and (4) easy to implement the fault-tolerant encoded circuit and non-encoded circuit.”

“Besides the error type considered in this work, other error models in a universal fault-tolerant protocol could be investigated based on this experimental platform. For example, with extending the experimental platform based on the optical spatial mode from single-photon framework to two-entangled-photon framework in this work, the nonlocal error effect could be further investigated in the fault-tolerant quantum computation.” the scientists forecast.

####

For more information, please click here

Contacts:
Media Contact

Yaobiao Li
Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

Office: 86-431-861-76851

Expert Contact

Chuan-Feng Li
University of Science and Technology of China

Copyright © Light Publishing Center, Changchun Institute of Optics, Fine Mechanics And Physics, CAS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project