Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics?

Lithium niobate based devices covering electro-optic, nonlinear, ferroelectric, acousto-optic, visible, rare earth doping devices, etc. Credit: G. Chen et al., doi 10.1117/1.AP.4.3.034003.
Lithium niobate based devices covering electro-optic, nonlinear, ferroelectric, acousto-optic, visible, rare earth doping devices, etc. Credit: G. Chen et al., doi 10.1117/1.AP.4.3.034003.

Abstract:
Lithium niobate (LiNbO3, LN) is one of the most important artificial materials and has been widely used in the photonics area since it was firstly discovered to have a ferroelectric property in 1949. Compared with other material systems, LN has various superior characteristics, such as a wide transparency window (400 nm to 5 m), large electro-optic (EO)/nonlinear-optic (NLO)/acousto-optic (AO)/pyroelectric coefficients, as well as stable chemical and physical properties. Based on these effects, various kinds of photonic devices have been demonstrated. For example, the large EO property of LN can be used for the realization of high-speed modulators.

Advances in lithium niobate photonics: High performance integrated LN-based photonic devices have developed rapidly in recent years, and many different structures have been demonstrated for various application scenarios—are we about to enter a new era of LN photonics?

Bellingham WA | Posted on June 24th, 2022

In typical bulk LN (planar devices), light is confined inside a planar waveguide formed by ion-in diffusion or proton exchange. In such a method, the refractive index contrast is usually very small (~ 0.02), therefore bulk LN based devices have a large feature size and relatively poor performance even though they have been successfully used for decades. The problem of poor index contrast hampers further development of LN photonics as high power and large device sizes are not compatible with desired trends in energy efficiency and integration.

This situation may yet change, though, as high-quality thin film LN (TFLN) with controlled thickness has become available through the lapping and polishing and crystal ion slicing (CIS) methods. These high quality TFLNs can be bonded onto an insulator with a lower refractive index (such as silicon oxide), and then an LN on insulator (LNOI) structure similar to silicon on insulator (SOI) is realized.

The principal benefit from the large refractive index contrast of LNOI is that much more compact devices can be integrated on the same single chip by patterning structures using various developed etching technologies. In addition, TFLN can also be bonded to other material platforms which are lithographically patterned, where LN serves as a thin layer of unpatterned film and the light from waveguides or devices fabricated in the bonded platform interact with it. Relying on developed processing technologies, LN based photonic devices with high-performance, especially integrated devices, have experienced rapid development in recent years and many different structures for various application scenarios have been demonstrated. An era of LN photonics is coming.

Researchers from the National University of Singapore (NUS), Huazhong University of Science and Technology (HUST), Agency for Science, Technology and Research (A*STAR), and Nanyang Technological University (NTU) recently summarized advances in LN photonics in detail. The content of this review, published in Advanced Photonics, includes the integrated LN photonics devices which have appeared in recent years, as well as selected bulk LN based devices and related processing technologies. In this way, the research community can reach a better, comprehensive understanding of the technology evolution of LN photonics.

On behalf of his team and the rapidly advancing field of research, Aaron J. Danner, NUS associate professor and senior author of the work, hopes readers may be inspired by this work and then contribute to the further development of LN photonics.

####

For more information, please click here

Contacts:
Daneet Steffens
SPIE--International Society for Optics and Photonics

Office: 360-685-5478

Copyright © SPIE--International Society for Optics and Photonics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the Gold Open Access article by G. Chen et al., “Advances in lithium niobate photonics: development status and perspectives,” Adv. Photon. 4(3) 034003 (2022), doi 10.1117/1.AP.4.3.034003:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Optical computing/Photonic computing

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project