Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A new step in the search for room-temperature superconductors

Abstract:
Scientists have found a new, nanoscale link between superconductivity — the flow of electric current without a loss of energy — and a phenomenon known as charge density waves.

A new step in the search for room-temperature superconductors

New Haven, CT | Posted on May 27th, 2022

The discovery, which is described in the journal Science, is a tantalizing step in the decades-long search for room-temperature superconductors that could unleash a new generation of electronics and computers.



The vast majority of superconducting materials operate at intensely cold temperatures, typically below -320 degrees Fahrenheit, making them impractical to use without a cooling system. Developing superconductors that operate at warmer temperatures could transform everything from laptop computers to regional power grids.



“Knowing what makes these materials superconductors gets us closer to being able to control them. We’re looking for any connection that relates to their superconductivity,” said Eduardo H. da Silva Neto, an assistant professor of physics in Yale’s Faculty of Arts and Sciences Yale and co-author of the new study. He is also a faculty member of Yale’s Energy Sciences Institute at West Campus.



The research team, which is led by the U.S. Department of Energy’s SLAC National Accelerator Laboratory at Stanford University and includes scientists from Yale, the University of British Columbia, and other institutions focused their study on a material called yttrium barium copper oxide (YBCO).



They found that YBCO’s superconductivity was linked at the nanoscale level with charge density waves — ripples in the density of electrons in the material.



When the scientists reduced YBCO’s superconductivity, by exposing it to infrared light, the material’s charge density waves increased and organized themselves in a more even, synchronized pattern. Conversely, when superconductivity was increased, the material’s charge density waves became less organized.



“In other words, superconductivity and charge density waves co-exist but they don’t like each other,” da Silva Neto said. “We’ve essentially found a ‘tuning knob’ to alter the shape of charge density waves, through increased or decreased superconductivity.”



The next step for scientists, da Silva Neto explained, is to reverse the process — and find ways to alter superconductivity via charge density waves.



A key element of the research, he added, was having access to the SLAC National Accelerator Laboratory, an underground facility in Menlo Park, California, devoted to a broad program in atomic and solid-state physics, chemistry, biology, and medicine.



Giacomo Coslovich, a staff scientist at the SLAC laboratory, was corresponding author of the new study; Scott Wandel of SLAC was the study’s first author. Tim Boyle, a visiting assistant in research at Yale, was a co-author of the study.



The research was funded, in part, by the U.S. Department of Energy Office of Science, the Alfred P. Sloan Fellowship in Physics, and the National Science Foundation.

####

For more information, please click here

Contacts:
Fred Mamoun
Yale University

Office: 323-363-1093

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Research breakthrough could be significant for quantum computing future: Irish-based scientists confirm crucial characteristic of new superconductor material June 30th, 2023

Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project