Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Frustrated' nanomagnets order themselves through disorder: Interactions between alternating layers of exotic, 2D material create 'entropy-driven order' in a structured system of magnets at equilibrium

Extremely small arrays of magnets, known as tetris spin ice (shown here), can order themselves by increasing their disorder.

CREDIT
Credit: University of Illinois at Urbana-Champaign
Extremely small arrays of magnets, known as tetris spin ice (shown here), can order themselves by increasing their disorder. CREDIT Credit: University of Illinois at Urbana-Champaign

Abstract:
Extremely small arrays of magnets with strange and unusual properties can order themselves by increasing entropy, or the tendency of physical systems to disorder, a behavior that appears to contradict standard thermodynamics — but doesn’t.

'Frustrated' nanomagnets order themselves through disorder: Interactions between alternating layers of exotic, 2D material create 'entropy-driven order' in a structured system of magnets at equilibrium

Los Alamos, NM | Posted on April 8th, 2022

“Paradoxically, the system orders because it wants to be more disordered,” said Cristiano Nisoli, a physicist at Los Alamos and coauthor of a paper about the research in Nature Physics. “Our research demonstrates entropy-driven order in a structured system of magnets at equilibrium.”

The system examined in this work, known as tetris spin ice, was studied as part of a long-standing collaboration between Nisoli and Peter Schiffer at Yale University, with theoretical analysis and simulations led at Los Alamos and experimental work led at Yale. The research team includes scientists from a number of universities and academic institutions.

Nanomagnet arrays, like tetris spin ice, show promise as circuits of logic gates in neuromorphic computing, a leading-edge computing architecture that closely mimics how the brain works. They also have possible applications in a number of high-frequency devices using “magnonics” that exploit the dynamics of magnetism on the nanoscale.

Entropy is the measure of the state of disorder, randomness or uncertainty in a physical system. A liquid, for instance, has high entropy because at warm temperatures — high energy — its molecules are free to move around in a random, disordered way.

But when liquids are cooled to form solids, the molecules calm down and order themselves through interactions to optimize their energy. They can arrange themselves in a crystal lattice in only a limited number of configurations. This lowers their entropy: they are highly ordered.

Some systems, however, are not so simple. Parts of the system settle in an orderly way, but others don’t. These “frustrated” systems retain disorder.

Tetris spin ice, which is composed of 2D arrays of very small magnets that interact but are frustrated, is a strange mix of the two cases. The magnetic pole orientations frustrated in such way that the system retains some order while remaining disordered. At low temperature it decomposes into alternating ordered and disordered stripes.

The apparent paradox of increasing entropy with increasing order is resolved by the entropic interaction between the alternating layers. By mutual ordering of the ordered stripes, the system increases the disorder in the other stripes. Thus, order happens without any decrease in energy, but via an increase in entropy.

“No law of thermodynamics is truly broken,” Nisoli said. “The concept that systems order by reducing entropy applies to most systems, but, as we show, not to all. Our system is exotic and behaves counterintuitively, with an increase of entropy, a measure of disorder, being the driver of visible order.”

The research team comprised members from Lawrence Berkeley National Laboratory, Los Alamos, Seagate Technology, University of Illinois at Urbana-Champaign, University of Liverpool, University of Minnesota, Wayne State University and Yale.

Funding: Laboratory Directed Research and Development at Los Alamos National Laboratory and U.S. Department of Energy Office of Basic Energy Sciences, and National Science Foundation.

####

For more information, please click here

Contacts:
Charles Poling
DOE/Los Alamos National Laboratory

Cell: 505-257-8006

Copyright © DOE/Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: “Entropy-Driven Order in an Array of Nanomagnets,” Hilal Saglam, Ayhan Duzgun, Aikaterini Kargioti, Nikhil Harle, Xiaoyu Zhang, Nicholas S. Bingham, Yuyang Lao, Ian Gilbert, Joseph Sklenar, Justin D. Watts, Justin Ramberger, Daniel Bromley, Rajesh V. Chopdekar, Liam O’Brien, Chris Leighton, Cristiano Nisoli, and Peter Schiffer, in Nature Physics. DOI: 10.1038/s41567-022-01555-6:

Related News Press

Laboratories

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Novel microscope developed to design better high-performance batteries: Innovation gives researchers inside view of how batteries work February 10th, 2023

News and information

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Magnetism/Magnons

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Quantum powers researchers to see the unseen September 8th, 2023

Chloride ions from seawater eyed as possible lithium replacement in batteries of the future August 11th, 2023

Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Possible Futures

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Discoveries

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Announcements

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Training quantum computers: physicists win prestigious IBM Award September 8th, 2023

Machine learning contributes to better quantum error correction September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Unlocking quantum potential: Harnessing high-dimensional quantum states with QDs and OAM: Generation of nearly deterministic OAM-based entangled states offers a bridge between photonic technologies for quantum advancements September 8th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

New compound unleashes the immune system on metastases September 8th, 2023

Research partnerships

Electronic detection of DNA nanoballs enables simple pathogen detection Peer-Reviewed Publication September 8th, 2023

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Destroying the superconductivity in a kagome metal: Electronic control of quantum transitions in candidate material for future low-energy electronics March 3rd, 2023

Polymer p-doping improves perovskite solar cell stability January 20th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project