Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > First integrated laser on lithium niobate chip: Research paves the way for high-powered telecommunication systems

The on-chip laser is combined with a 50 gigahertz electro-optic modulator in lithium niobate to build a high-power transmitter.

CREDIT
(Credit: Second Bay Studios/Harvard SEAS)
The on-chip laser is combined with a 50 gigahertz electro-optic modulator in lithium niobate to build a high-power transmitter. CREDIT (Credit: Second Bay Studios/Harvard SEAS)

Abstract:
For all the recent advances in integrated lithium niobate photonic circuits — from frequency combs to frequency converters and modulators — one big component has remained frustratingly difficult to integrate: lasers.

First integrated laser on lithium niobate chip: Research paves the way for high-powered telecommunication systems

Cambridge, MA | Posted on April 8th, 2022

Long haul telecommunication networks, data center optical interconnects, and microwave photonic systems all rely on lasers to generate an optical carrier used in data transmission. In most cases, lasers are stand-alone devices, external to the modulators, making the whole system more expensive and less stable and scalable.

Now, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) in collaboration with industry partners at Freedom Photonics and HyperLight Corporation, have developed the first fully integrated high-power laser on a lithium niobate chip, paving the way for high-powered telecommunication systems, fully integrated spectrometers, optical remote sensing, and efficient frequency conversion for quantum networks, among other applications.

“Integrated lithium niobate photonics is a promising platform for the development of high-performance chip-scale optical systems, but getting a laser onto a lithium niobate chip has proved to be one of the biggest design challenges,” said Marko Loncar, the Tiantsai Lin Professor of Electrical Engineering and Applied Physics at SEAS and senior author of the study. “In this research, we used all the nano-fabrication tricks and techniques learned from previous developments in integrated lithium niobate photonics to overcome those challenges and achieve the goal of integrating a high-powered laser on a thin-film lithium niobate platform.”

The research is published in the journal Optica.

Loncar and his team used small but powerful distributed feedback lasers for their integrated chip. On chip, the lasers sit in small wells or trenches etched into the lithium niobate and deliver up to 60 milliwatts of optical power in the waveguides fabricated in the same platform. The researchers combined the laser with a 50 gigahertz electro-optic modulator in lithium niobate to build a high-power transmitter.

“Integrating high-performance plug-and-play lasers would significantly reduce the cost, complexity, and power consumption of future communication systems,” said Amirhassan Shams-Ansari, a graduate student at SEAS and first author of the study. “It’s a building block that can be integrated into larger optical systems for a range of applications, in sensing, lidar, and data telecommunications.”

By combining thin-film lithium niobate devices with high-power lasers using an industry-friendly process, this research represents a key step towards large-scale, low-cost, and high-performance transmitter arrays and optical networks. Next, the team aims to increase the laser’s power and scalability for even more applications.

Harvard’s Office of Technology Development has protected the intellectual property arising from the Loncar Lab’s innovations in lithium niobate systems. Loncar is a cofounder of HyperLight Corporation, a startup which was launched to commercialize integrated photonic chips based on certain innovations developed in his lab.

The research was co-authored by Dylan Renaud, Rebecca Cheng, Linbo Shao,

Di Zhu, and Mengjie Yu, from SEAS, Hannah R. Grant, Leif Johansson from Freedom Photonics and Lingyan He and Mian Zhang from HyperLight Corporation. It was supported by the Defense Advanced Research Projects Agency under grant HR0011-20-C-0137 and the Air Force Office of Scientific Research under grant FA9550-19-1-0376.

####

For more information, please click here

Contacts:
Leah Burrows
Harvard John A. Paulson School of Engineering and Applied Sciences

Office: 617-496-1351

Copyright © Harvard John A. Paulson School of Engineering and Applied Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper:

Related News Press

News and information

Drawing data in nanometer scale September 30th, 2022

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Exquisitely thin membranes can slash energy spent refining crude oil into fuel and plastic: Queen Mary scientists have created a new type of nanomembrane that presents a less energy intensive way to fractionate hydrocarbons from crude oil September 30th, 2022

Wireless/telecommunications/RF/Antennas/Microwaves

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Nanofabrication

Purdue researchers suggest novel way to generate a light source made from entangled photons: This research shows promise in establishing the measurement of entangled photons down to the attosecond, and possibly even zeptosecond September 9th, 2022

Mimicking termites to generate new materials August 26th, 2022

Electrically driven single microwire-based single-mode microlaser July 8th, 2022

Efficiently processing high-quality periodic nanostructures with ultrafast laser July 1st, 2022

Govt.-Legislation/Regulation/Funding/Policy

Drawing data in nanometer scale September 30th, 2022

New technique allows researchers to scrape beyond the surface of nanomaterials: Using a new secondary-ion mass spectrometry technique, research are getting a fresh look at MXenes and MAX phases September 23rd, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Heat-resistant nanophotonic material could help turn heat into electricity: The key to beating the heat is degrading the materials in advance September 23rd, 2022

Possible Futures

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Chip Technology

Conformal optical black hole for cavity September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Optical computing/Photonic computing

Conformal optical black hole for cavity September 30th, 2022

“Twisty” photons could turbocharge next-gen quantum communication: Team’s on-chip technology uses orbital angular momentum to encode more information into a single photon September 23rd, 2022

Purdue researchers suggest novel way to generate a light source made from entangled photons: This research shows promise in establishing the measurement of entangled photons down to the attosecond, and possibly even zeptosecond September 9th, 2022

Chiral quasi bound states in the continuum for high-purity circularly polarized light source: Researchers demonstrate high-purity, highly directional, and high-Q circularly polarized light source from spontaneous emission to laser September 9th, 2022

Announcements

Researchers unveil mystery inside Li- o2 batteries September 30th, 2022

Synthesis of air-stable room-temperature van der Waals magnetic thin flakes September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

ACM Research Launches New Furnace Tool for Thermal Atomic Layer Deposition to Support Advanced Semiconductor Manufacturing Requirements: Ultra Fn A Furnace Tool Shipped to China-Based Foundry Customer September 30th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Conformal optical black hole for cavity September 30th, 2022

Cleveland researchers reveal new strategy to prevent blood clots without increasing the risk of bleeding: University Hospitals and Case Western Reserve University findings may be especially impactful for cancer patients who experience blood clot complications September 30th, 2022

Ultrasmall VN/Co heterostructure with optimized N active sites anchored in N-doped graphitic nanocarbons for boosting hydrogen evolution September 30th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

Military

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Heat-resistant nanophotonic material could help turn heat into electricity: The key to beating the heat is degrading the materials in advance September 23rd, 2022

Understanding outsize role of nanopores: New research reveals differences in pH, and more, about these previously mysterious environments August 26th, 2022

New chip ramps up AI computing efficiency August 19th, 2022

Photonics/Optics/Lasers

“Twisty” photons could turbocharge next-gen quantum communication: Team’s on-chip technology uses orbital angular momentum to encode more information into a single photon September 23rd, 2022

Purdue researchers suggest novel way to generate a light source made from entangled photons: This research shows promise in establishing the measurement of entangled photons down to the attosecond, and possibly even zeptosecond September 9th, 2022

Chiral quasi bound states in the continuum for high-purity circularly polarized light source: Researchers demonstrate high-purity, highly directional, and high-Q circularly polarized light source from spontaneous emission to laser September 9th, 2022

New road towards spin-polarised currents September 9th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project