Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Studying atomic structure of aluminum alloys for manufacturing modern aircraft

Abstract:
Researchers from the Belgorod State University (BSU) and the Skolkovo Institute of Science and Technology (Skoltech) studied aluminum alloys at the atomic level and found patterns that will help improve their structure. The findings will be useful for developing new alloys for modern aircraft.

Studying atomic structure of aluminum alloys for manufacturing modern aircraft

Moscow, Russia | Posted on March 25th, 2022

According to Marat Gazizov, senior researcher at the BSU Laboratory of Mechanical Properties of Nanostructured and Heat-Resistant Materials, the study focused on the Al-Cu-Mg-Ag system used for the wing and fuselage skin. The aluminum alloys used in aircraft structures have a wealth of advantages, such as small weight and resistance to wear and fracture at elevated temperatures, as well as cyclic and shock loads.

"Aluminum is combined with copper (Cu), magnesium (Mg), silver (Ag) and some other elements to achieve the desired properties. This process called alloying can significantly enhance the strength of the material treated by specific thermal or thermomechanical methods," Marat Gazizov explains.

Al-Cu-Mg-Ag alloying helps obtain high heat resistance alloys, but according to the project lead, the evolution of the alloy's structure and mechanical properties in various thermal or thermomechanical treatment modes and operating conditions is still not well understood, which explains the choice of topic for this study.

Marat Gazizov adds that the alloys are used as a structural material for parts and assemblies exposed to elevated temperatures, which calls for a unique combination of strength, fracture toughness, and high fatigue crack growth resistance.

"These days, computer simulation is no longer viewed as a 'magic wand' and is commonly used to study atomic-level effects. While experimenting with the heat-resistant aluminum alloy containing very small quantities of copper, magnesium and silver, we observed the formation of dispersed particles with a thickness of only a few nanometers which make the alloy much stronger despite their small size. In addition, the particles turned out to be coherent and fit well into the aluminum matrix, like pieces of a puzzle, although with slight distortions in their atomic structure. Also, we found that the particles' structure and, therefore, the heat-treated alloy's mechanical behavior change according to a certain pattern," Anton Boev, a research scientist at Skoltech, notes.

The study, published in the journal Materials Characterization, enhances the understanding of the unique mechanical properties and structure of aluminum alloys. The combination of mechanical properties obtained by the team will help extend the lifetime of aircraft structures made from these materials.

####

For more information, please click here

Contacts:
Ilyana Zolotareva
Skolkovo Institute of Science and Technology (Skoltech)

Cell: (915) 3500690

Copyright © Skolkovo Institute of Science and Technology (Skoltech)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project