Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs

The illustration shows a microplate well in the foreground, while in the background a tested sample receives red laser light and releases twisted blue light. Image credit: Ventsislav Valev, Kylian Valev and Lukas Ohnoutek, University of Bath
The illustration shows a microplate well in the foreground, while in the background a tested sample receives red laser light and releases twisted blue light. Image credit: Ventsislav Valev, Kylian Valev and Lukas Ohnoutek, University of Bath

Abstract:
Twisted nanoscale semiconductors manipulate light in a new way, researchers at the University of Bath and the University of Michigan have shown. The effect could be harnessed to accelerate the discovery and development of life-saving medicines as well as photonic technologies.

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs

Ann Arbor, MI | Posted on January 14th, 2022

Specifically, the photonic effect could help enable rapid development and screening of new antibiotics and other drugs through automation—essentially, robotic chemists. It offers a new analysis tool for high-throughput screening, a method to analyze vast libraries of chemical compounds. A tiny sample of each compound fills a well on a microplate. The wells can be as small as a cubic millimeter, and a plate the size of a chocolate bar can contain a thousand of them.

"To meet the requirements of the emerging robotized chemistry, wells are getting really tiny—too small for current analytical methods," said Ventsislav Valev, professor of physics at the University of Bath in the U.K. and co-corresponding author of the paper in Nature Photonics. "So, fundamentally new methods are needed to analyze would-be drugs."

One of the key measurements in drug analysis is chirality, or which way the molecule twists. Biological systems, including the human body, typically prefer one direction over the other, a right-handed or left-handed curl. At best, a drug molecule with the wrong twist does nothing, but at worst, it can cause harm. The effect discovered by the researchers allows chirality to be measured in volumes that are 10,000 times smaller than a cubic millimeter.

"The small volumes possible for registration of these effects are the game changing property that enables the researchers to use very small amounts of expensive drugs and collect thousands times more data," said Nicholas Kotov, the Irving Langmuir Distinguished University Professor of Chemical Sciences and Engineering at the University of Michigan and co-corresponding author of the paper.

The method relies on a structure inspired by biological designs, developed in Kotov's lab. Cadmium telluride, a semiconductor commonly used in solar cells, is shaped into nanoparticles resembling short segments of twisted ribbon. These assemble into helices, mimicking the way proteins assemble.

"Being illuminated with red light, the small semiconductor helices generate new light that is blue and twisted. The blue light is also emitted in a specific direction, which makes it easy to collect and analyze," Kotov said. "The trifecta of unusual optical effects drastically reduces the noise that other nanoscale molecules and particles in biological fluids may cause."

To use these effects in high-throughput screening for drug discovery, the nanoparticles assembling into helices may be mixed with a drug candidate. When the nanohelices form a lock-and-key structure with the drug, simulating the drug target, the twist of the nanohlices will change dramatically. This change in the twist can be measured through the blue light.

"Applications to drugs are now only a question of technological development. Our next step is to seek funding for this development," said Valev, who led the photonic experiments at Bath.

The generation of the blue light from red is also helpful in drug development in samples approaching the complexity of biological tissues. The separation of two colors of light is technically easy and helps reduce light noise, false positives and false negatives. While the team attempted experiments testing the biological concept, COVID-19 closures and delays caused the protein samples to spoil each time.

"The postdoc on my side, Ji-Young Kim, and Ph.D. student Lukas Ohnoutek on the Bath side, they are heroes. They were trying to work in some night shifts, even when it was very restricted," Kotov said.

The research was funded by the Royal Society, Science and Technology Facilities Council, and Engineering and Physical Science Research Council in the U.K., and the U.S. Office of Naval Research. Kotov is also the Joseph B. and Florence V. Cejka Professor of Engineering and professor of chemical engineering, materials science and engineering, and macromolecular science and engineering.

The University of Michigan has filed for patent protection and is seeking partners to bring the new technology to market.

####

For more information, please click here

Contacts:
Katherine McAlpine
University of Michigan

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Study: Third-harmonic Mie scattering from semiconductor nanohelices (DOI: 10.1038/s41566-021-00916-6):

Related News Press

News and information

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Possible Futures

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Nanomedicine

Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022

‘Smart’ diaper for bedside urine testing Peer-Reviewed Publication May 6th, 2022

New miniature heart could help speed heart disease cures: Boston University–led team has engineered a tiny living heart chamber replica to more accurately mimic the real organ and provide a sandbox for testing new heart disease treatments April 22nd, 2022

Injectable stem cell assembly for cartilage regeneration April 15th, 2022

Discoveries

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Announcements

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

Nanobiotechnology

Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022

‘Smart’ diaper for bedside urine testing Peer-Reviewed Publication May 6th, 2022

New miniature heart could help speed heart disease cures: Boston University–led team has engineered a tiny living heart chamber replica to more accurately mimic the real organ and provide a sandbox for testing new heart disease treatments April 22nd, 2022

Injectable stem cell assembly for cartilage regeneration April 15th, 2022

Photonics/Optics/Lasers

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Rice ‘metalens’ could disrupt vacuum UV market: Solid-state nanophotonic technology could potentially replace cabinets of equipment May 6th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project