Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Record-breaking hole mobility heralds a flexible future for electronics: Researchers from The University of Tsukuba grow a germanium thin film on a flexible polyimide substrate, resulting in a material with the highest hole mobility reported to date

Researchers from the University of Tsukuba have produced a record-breaking polycrystalline germanium (Ge) thin film on a flexible polyimide substrate. Tuning the growth temperature and thickness of the GeOx underlayer gave a Ge film with large crystals and a hole mobility of 690 cm2 V−1 s−1, the highest reported for an insulator-supported semiconductor. The high-performance, flexible material is expected to contribute to the development of electronics for large-scale initiatives such as the internet of things.

CREDIT
University of Tsukuba
Researchers from the University of Tsukuba have produced a record-breaking polycrystalline germanium (Ge) thin film on a flexible polyimide substrate. Tuning the growth temperature and thickness of the GeOx underlayer gave a Ge film with large crystals and a hole mobility of 690 cm2 V−1 s−1, the highest reported for an insulator-supported semiconductor. The high-performance, flexible material is expected to contribute to the development of electronics for large-scale initiatives such as the internet of things. CREDIT University of Tsukuba

Abstract:
Technologists envisage an electronically interconnected future that will depend on cheap, lightweight, flexible devices. Efforts to optimize the semiconductor materials needed for these electronic devices are therefore necessary. Researchers from the University of Tsukuba have reported a record-breaking germanium (Ge) thin film on a plastic substrate that offers flexibility without compromising performance. Their findings are published in ACS Applied Electronic Materials (Supplementary Journal Cover).

Record-breaking hole mobility heralds a flexible future for electronics: Researchers from The University of Tsukuba grow a germanium thin film on a flexible polyimide substrate, resulting in a material with the highest hole mobility reported to date

Tsukuba, Japan | Posted on December 24th, 2021

Ge is a popular semiconductor for use in transistors because it has high charge carrier mobility (charge carrier refers to the electrons and electron holes that move through the material). Ge can also be processed at the relatively low temperature of ~500°C and has a low Young’s modulus, which means it is a softer alternative to commonly used materials such as silicon.

Ge thin films can be grown using the solid-phase crystallization technique. These thin films are polycrystalline, meaning they are made up of many Ge crystals. In general, larger crystals lead to greater carrier mobilities because bigger crystals form fewer grain boundaries that obstruct the current. Recent increases in grain size have therefore led to effective Ge thin-film transistors on rigid substrates such as glass.

However, many of the plastic substrates used to introduce flexibility are not resistant to temperature above 400°C, which makes it difficult to grow high quality crystals with appropriate carrier mobility.

Now, the researchers have used a polyimide film that can withstand temperatures up to 500°C. This allowed post-annealing treatment of the films, meaning crystal quality was not compromised for flexibility.

“We grew a GeOx layer directly on the flexible polyimide, then the Ge film on top of that,” explains study lead author Professor Kaoru Toko. “Oxygen that diffused into the Ge from the GeOx layer helped to achieve large crystals. We found that the Ge crystallinity was influenced by both the thickness of the GeOx layer and the temperature at which the Ge layer was grown.”

In this study, the largest Ge crystals observed were approximately 13 µm in diameter and grown at 375°C on a 100-nm-thick GeOx layer. The large grain size resulted in the film having a hole mobility of 690 cm2 V−1 s−1, which is the highest value reported to date for a semiconductor on an insulating substrate.

“Our record-breaking film is a significant step forward for transistor technology,” says Professor Toko. “Its high performance, combined with its flexibility, affordability, and portability, make it perfectly suited to the development of new flexible devices such as wearable electronics to support future digital initiatives such as the internet of things.”

####

For more information, please click here

Contacts:
Naoko Yamashina
University of Tsukuba

Copyright © University of Tsukuba

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The study, “Record-high hole mobility germanium on flexible plastic with controlled interfacial reaction”, was published in ACS Applied Electronic Materials (Supplementary Journal Cover)at DOI: 10.1021/acsaelm.1c00997.

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Flexible Electronics

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

CityU awarded invention: Soft, ultrathin photonic material cools down wearable electronic devices June 30th, 2023

Liquid metal sticks to surfaces without a binding agent June 9th, 2023

Breaking through the limits of stretchable semiconductors with molecular brakes that harness light June 9th, 2023

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project