Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Review on the femtosecond laser precision micro/nano-engineering

Femtosecond laser precision engineering strategies and the related applications: (a) bull sculpture produced by TPA, the scale bar is 2 μm, (b) microhole array fabricated on 150 μm Al film by femtosecond laser direct scanning, (c) wet etching of nanopores fabricated by 3D femtosecond laser writing in YAG crystal, (d) negative metal oxide semiconductor patterns fabricated by femtosecond laser assisting NSOM, (e) functional microstructures made by parallel femtosecond laser processing, (f) surface morphology of HP-PCL achieved by femtosecond laser microperforation, (g) SEM image of laser microstructured Si surface formed in SF6 with femtosecond laser pulses, and (h) 3D functional photonic crystal fabricated using 1030 nm femtosecond laser in a SZ2080 photoresist without using of photo initiator.

CREDIT
Ultrafast Science
Femtosecond laser precision engineering strategies and the related applications: (a) bull sculpture produced by TPA, the scale bar is 2 μm, (b) microhole array fabricated on 150 μm Al film by femtosecond laser direct scanning, (c) wet etching of nanopores fabricated by 3D femtosecond laser writing in YAG crystal, (d) negative metal oxide semiconductor patterns fabricated by femtosecond laser assisting NSOM, (e) functional microstructures made by parallel femtosecond laser processing, (f) surface morphology of HP-PCL achieved by femtosecond laser microperforation, (g) SEM image of laser microstructured Si surface formed in SF6 with femtosecond laser pulses, and (h) 3D functional photonic crystal fabricated using 1030 nm femtosecond laser in a SZ2080 photoresist without using of photo initiator. CREDIT Ultrafast Science

Abstract:
Femtosecond laser precision engineering has been applied in industries for device micro/nano-fabrication due to its unique advantages of being a dry and noncontact process, coupled with the availability of reliable light sources and affordable system cost. It is an important advanced manufacturing means for high quality micro/nano-structures creation and related surface processing, especially to create new functional MEM/NEM devices and structures.

Review on the femtosecond laser precision micro/nano-engineering

Shaanxi, P.R.China | Posted on December 3rd, 2021

Prof. Hong Minghui's research group at the National University of Singapore summarizes the development and latest progress of laser precision engineering from micron, sub-micron, to nanoscale. Combined with other advanced processing tools, femtosecond laser precision engineering’s resolution has been much smaller than the optical diffraction limit, which will play an important role in next-generation nano-manufacturing. For the micron-scale creation, the widely employed femtosecond laser fabrication strategies, including two/multi-photons absorption, laser-induced plasma-assisted ablation, and incubation effect are highlighted.

Furthermore, the recent progress about micro-lens arrays and interference lithography techniques for the sub-micron feature creation, especially large area periodic surface structuring, are also discussed. For the femtosecond laser nano-fabrication, both the processing strategies working in near field and far field are summarized.

The outlook of femtosecond laser precision engineering is also evaluated. How to achieve small heat affected zone is the first key issue in high quality laser precision engineering to push its resolution from micro-scale to nano-scale. Secondly, ensuring a high enough processing speed to meet various industrial needs is also a key challenge since one beam laser processing at high resolution could not meet this requirement. The third challenge is how to carry out the laser nano-structuring in the far field as the near field effect requires tiny optics working very close to sample surfaces, which confines the near field laser nano-fabrication to be only suitable for a few super-smooth surface samples.

####

For more information, please click here

Contacts:
Jiangbo She
Ultrafast Science

Copyright © Ultrafast Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

NSF funds Rice effort to measure, preserve quantum entanglement: Physicist Guido Pagano wins CAREER Award to develop tools for quantum computing January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Nanofabrication

Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021

New tech builds ultralow-loss integrated photonic circuits April 16th, 2021

Kirigami-style fabrication may enable new 3D nanostructures April 2nd, 2021

Building tough 3D nanomaterials with DNA: Columbia Engineers use DNA nanotechnology to create highly resilient synthetic nanoparticle-based materials that can be processed through conventional nanofabrication methods March 19th, 2021

Possible Futures

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Discoveries

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Announcements

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

Photonics/Optics/Lasers

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

Super-resolved imaging of a single cold atom on a nanosecond timescale January 7th, 2022

Using magnets to toggle nanolasers leads to better photonics: Controlling nanolasers with magnets lays the groundwork for more robust optical signalling December 24th, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project