Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Energizer atoms: JILA researchers find new way to keep atoms excited

Still images from animation of JILA's experiment keeping atoms excited longer than usual.

CREDIT
Hanacek/NIST
Still images from animation of JILA's experiment keeping atoms excited longer than usual. CREDIT Hanacek/NIST

Abstract:
JILA researchers have tricked nature by tuning a dense quantum gas of atoms to make a congested “Fermi sea,” thus keeping atoms in a high-energy state, or excited, for about 10% longer than usual by delaying their normal return to the lowest-energy state. The technique might be used to improve quantum communication networks and atomic clocks.

Energizer atoms: JILA researchers find new way to keep atoms excited

Gaithersburg, MD | Posted on November 19th, 2021

Quantum systems such as atoms that are excited above their resting state naturally calm down, or decay, by releasing light in quantized portions called photons. This common process is evident in the glow of fireflies and emission from LEDs. The rate of decay can be engineered by modifying the environment or the internal properties of the atoms. Previous research has modified the electromagnetic environment; the new work focuses on the atoms.

The new JILA method relies on a rule of the quantum world known as the Pauli exclusion principle, which says identical fermions (a category of particles) can’t share the same quantum states at the same time. Therefore, if enough fermions are in a crowd — creating a Fermi sea — an excited fermion might not be able to fling out a photon as usual, because it would need to then recoil. That recoil could land it in the same quantum state of motion as one of its neighbors, which is forbidden due to a mechanism called Pauli blocking.

The blocking achievement is described in the Nov. 19 issue of Science. JILA is jointly operated by the National Institute of Standards and Technology (NIST) and University of Colorado Boulder.

“Pauli blocking uses well-organized quantum motional states of a Fermi sea to block the recoil of an atom that wants to decay, thus prohibiting spontaneous decay,” NIST/JILA Fellow Jun Ye said. “It is a profound quantum effect for the control of matter’s properties that was previously deemed unchangeable.”

The idea of engineering an atom’s excited-state lifetime by embedding it in a Fermi sea has been proposed before, but the JILA group is the first, along with other research described in the same issue of Science, to actually do it. This is the first time that atoms’ internal radiation properties have been linked to their external motion.

The JILA team carried out the experiments with a low-energy, or degenerate, Fermi gas of thousands of strontium atoms. The JILA group uses these quantum gases to make the latest atomic clocks. In these low-temperature Fermi gases, all the atoms’ properties are restricted to specific values, or quantized, and the atoms avoid each other by keeping a minimum distance between pairs. By contrast, atoms in ordinary gases are randomly distributed, and they do not collectively influence each other.

The researchers used blue light to excite atoms in the Fermi sea and then measured the resulting photon radiation along different directions. By setting up specific conditions, the team reduced photon emission along a narrow scattering angle by up to 50%. In this case, an atom prepared in the excited state would on average remain in this state 10% longer than usual. The natural excited lifetime of five nanoseconds was too short to measure, so the researchers used photon scattering as an indirect indicator. Future experiments using different energy levels in the atoms or denser and even colder gases could extend excited states for longer time periods or even block decay entirely, Ye said.

Key features of the experiment included making a gas with the lowest possible energy, enabling the purely quantum-mechanical blocking phenomenon to occur. In addition, the Fermi sea was large enough that atoms in the middle couldn’t escape. Atoms on the surface can’t be blocked as easily.

Finally, the researchers excited only a small number of atoms and collected the emitted photons at a narrow angle with respect to the blue excitation beam. This configuration enabled observation of small motion transfers. A large angle would give the atoms too much of a momentum kick, increasing their chances of escape and weakening the blocking effect.

The JILA technique offers new ways to quantum-engineer atom-light systems, with potential applications such as protecting optical qubits in quantum communication networks and improving atomic clock stability by extending atom interrogation times to maintain exact ticking.

Funding for the research was provided by the Defense Advanced Research Projects Agency, the National Science Foundation and NIST.

####

For more information, please click here

Contacts:
Laura Ost
National Institute of Standards and Technology (NIST)

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Pauli blocking of atom-light scattering:

Related News Press

News and information

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

NSF funds Rice effort to measure, preserve quantum entanglement: Physicist Guido Pagano wins CAREER Award to develop tools for quantum computing January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Quantum communication

Major instrumentation initiative for research into quantum technologies: Paderborn University receives funding from German Research Foundation December 24th, 2021

How flawed diamonds 'lead' to flawless quantum networks October 1st, 2021

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Researchers take quantum encryption out of the lab: Field trial shows simple QKD system works with existing telecommunication network in Italy June 11th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Physicists watch as ultracold atoms form a crystal of quantum tornadoes: The new observations record a key crossover from classical to quantum behavior January 7th, 2022

Nanotube fibers stand strong -- but for how long? Rice scientists calculate how carbon nanotubes and their fibers experience fatigue December 24th, 2021

Record-breaking hole mobility heralds a flexible future for electronics: Researchers from The University of Tsukuba grow a germanium thin film on a flexible polyimide substrate, resulting in a material with the highest hole mobility reported to date December 24th, 2021

Possible Futures

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Discoveries

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Announcements

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

Military

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Physicists watch as ultracold atoms form a crystal of quantum tornadoes: The new observations record a key crossover from classical to quantum behavior January 7th, 2022

Series of preclinical studies supports the Army’s pan-coronavirus vaccine development strategy December 17th, 2021

Light speed advances: UD Prof. Tingyi Gu receives DARPA Young Faculty Award December 3rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project