Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Visualizing temperature transport: An unexpected technique for nanoscale characterization

CREDIT
Tokyo Tech
CREDIT Tokyo Tech

Abstract:
As devices continue to shrink, new challenges in their measurement and design present themselves. For devices based on molecular junctions, in which single molecules are bound to metals or semiconductors, we have a variety of techniques to study and characterize their electric transport properties. In contrast, probing the thermal transport properties of such junctions at the nanoscale has proven more challenging, and many temperature-related quantum phenomena in them remain poorly understood.

Visualizing temperature transport: An unexpected technique for nanoscale characterization

Tokyo, Japan | Posted on November 19th, 2021

In a few studies, scientists managed to measure the thermal transport properties in molecular junctions at the nanoscale using a technique called scanning thermal microscopy (SThM). This method involves putting a very sharp metallic tip in contact with the target material and moving this tip throughout the material’s surface. The tip, which is heated from behind using a laser, contains a thermocouple. This small device measures temperature differences and so, by balancing the heating of the tip caused by the laser with the tip’s cooling caused by heat flowing into the target sample, it becomes possible to measure a material’s thermal transport characteristics point by point.

In a recent study published in Journal of the American Chemical Society, scientists from Tokyo Tech reported a serendipitous yet important finding while using SThM. The team was employing a SThM technique to measure the thermal transport properties of self-assembled monolayers (SAMs). These samples contained alternating stripes of each of the three possible pairs between n-Hexadecanethiol, n-Butanethiol, and Benzenethiol. Besides employing the standard contact-based SThM approach, the researchers tried using a non-contact regime as well, in which the tip of the scanning thermal microscope was kept above the sample without touching it. Unexpectedly, they realized this non-contact regime had some serious potential.

In the contact SThM regime, heat flows directly from the tip to the sample. By contrast, in the non-contact SThM regime, the only heat transfer between the tip and the sample occurs via heat radiation. As the team found out through experiments, while the contact regime is best for visualizing the thermal transport characteristics, the non-contact regime is much more sensitive to the actual length of the molecules ‘sticking out’ from the substrate. Thus, the combination of the non-contact and contact regimes provides an all-new way of creating topographic and thermal transport images of a sample simultaneously.

Moreover, the non-contact approach has advantages over other well-established microscopy techniques, as Associate Professor Shintaro Fujii, lead author of the paper, explains: “The non-contact SThM approach is completely non-destructive, unlike other techniques like atomic force microscopy, which does require contact between the scanning tip and the sample and thus has a mechanical impact that can damage soft organic materials.”

Overall, the insight provided by this study will pave the way to novel technological advances and a deeper comprehension of materials at the nanoscale. “Our work not only is the first to provide thermal images of organic SAMs, but also provides a new technique for investigating thermal transport properties, which will be essential for thermal management in various types of nanodevices,” concludes Fujii.

Let us hope this work helps scientists elucidate the many mysteries of thermal phenomena.

####

For more information, please click here

Contacts:
Kazuhide Hasegawa
Tokyo Institute of Technology

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

NSF funds Rice effort to measure, preserve quantum entanglement: Physicist Guido Pagano wins CAREER Award to develop tools for quantum computing January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Imaging

JEOL Introduces New Scanning Electron Microscope with “Simple SEM” Automation and Live Elemental and 3D Analysis January 14th, 2022

Super-resolved imaging of a single cold atom on a nanosecond timescale January 7th, 2022

Researchers use electron microscope to turn nanotube into tiny transistor December 24th, 2021

Major instrumentation initiative for research into quantum technologies: Paderborn University receives funding from German Research Foundation December 24th, 2021

Possible Futures

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Chip Technology

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

Intense monocycle terahertz pulses from shifting electrons in quantum structures January 7th, 2022

Researchers detect two-dimensional kagome surface states January 7th, 2022

Mass production of revolutionary computer memory moves closer with ULTRARAM™ on silicon wafers for the first time January 7th, 2022

Nanoelectronics

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Non-linear effects in coupled optical microcavities August 5th, 2021

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Using the environment to control quantum devices: A deeper understanding of how the environment impacts quantum behaviour is bringing quantum devices one step closer to widespread adoption June 1st, 2021

Discoveries

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Announcements

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

Photonics/Optics/Lasers

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

Super-resolved imaging of a single cold atom on a nanosecond timescale January 7th, 2022

Using magnets to toggle nanolasers leads to better photonics: Controlling nanolasers with magnets lays the groundwork for more robust optical signalling December 24th, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project