Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > An artificial material that can sense, adapt to its environment: University of Missouri engineers are collaborating with researchers at University of Chicago to design the material

Guoliang Huang is the Huber and Helen Croft Chair in Engineering at the University of Missouri College of Engineering.

CREDIT
University of Missouri
Guoliang Huang is the Huber and Helen Croft Chair in Engineering at the University of Missouri College of Engineering. CREDIT University of Missouri

Abstract:
Move over, Hollywood — science fiction is getting ready to leap off the big screen and enter the real world. While recent science fiction movies have demonstrated the power of artificially intelligent computer programs, such as the fictional character J.A.R.V.I.S. in the Avenger film series, to make independent decisions to carry out a set of actions, these imagined movie scenarios could now be closer to becoming a reality.

An artificial material that can sense, adapt to its environment: University of Missouri engineers are collaborating with researchers at University of Chicago to design the material

Columbia, MO | Posted on November 5th, 2021

In a recent study published in Nature Communications, a journal of Nature, researchers at the University of Missouri and University of Chicago have developed an artificial material, called a metamaterial, which can respond to its environment, independently make a decision, and perform an action not directed by a human being. For example, a drone making a delivery might evaluate its environment including wind direction, speed or wildlife, and automatically change course in order to complete the delivery safely.

Guoliang Huang, Huber and Helen Croft Chair in Engineering, and co-author on the study, said the mechanical design of their new artificial material incorporates three main functions also displayed by materials found in nature — sensing; information processing; and actuation, or movement.

Some examples of these natural materials include the quick reaction of a Venus fly trap’s leafy jaws to capture an insect, chameleons changing the color of their skin to blend into their surroundings, and pine cones adjusting their shapes in response to changes in air humidity, Huang said.

“Basically, we are controlling how this material responds to changes in external stimuli found in its surroundings,” Huang said. “For example, we can apply this material to stealth technology in the aerospace industry by attaching the material to aerospace structures. It can help control and decrease noises coming from the aircraft, such as engine vibrations, which can increase its multifunctional capabilities.”

The material uses a computer chip to control or manipulate the processing of information that’s needed to perform the requested actions, then uses the electrical power to convert that energy into mechanical energy. The researchers’ next step is to implement their idea in a real-world environment.

“Realization of active metamaterials with odd micropolar elasticity,” was published in Nature Communications. Co-authors include Yangyang Chen and Xiaopeng Li at MU and Colin Scheibner and Vincenzo Vitelli at the University of Chicago.

Funding is provided by grants from the Air Force Office of Scientific Research (AF9550-18-1-0342 and AF 9550-20-0279), the Army Research Office (W911NF-18-1-0031 and W911NF-19-1-0268) and the National Science Foundation Graduate Research Fellowship (1746045). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

####

For more information, please click here

Contacts:
Eric Stann
University of Missouri-Columbia

Office: 573-882-3346

Copyright © University of Missouri-Columbia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

NSF funds Rice effort to measure, preserve quantum entanglement: Physicist Guido Pagano wins CAREER Award to develop tools for quantum computing January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Physicists watch as ultracold atoms form a crystal of quantum tornadoes: The new observations record a key crossover from classical to quantum behavior January 7th, 2022

Nanotube fibers stand strong -- but for how long? Rice scientists calculate how carbon nanotubes and their fibers experience fatigue December 24th, 2021

Record-breaking hole mobility heralds a flexible future for electronics: Researchers from The University of Tsukuba grow a germanium thin film on a flexible polyimide substrate, resulting in a material with the highest hole mobility reported to date December 24th, 2021

Possible Futures

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Discoveries

Towards high-performance organic optoelectronics with better crystallinity at semiconductor interface: Organic molecular interfaces with minimized structural mismatch and spontaneous electron transfer could open doors to high-efficiency optoelectronics January 14th, 2022

Bioengineered nanoparticles show promise for fibrinogen manufacture, says Journal of Pharmaceutical Analysis study: Scientists engineer a nanoparticle polymer that can selectively bind to fibrinogen in human plasma, presenting a pathway for improved drug development January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Materials/Metamaterials

Nanotube fibers stand strong -- but for how long? Rice scientists calculate how carbon nanotubes and their fibers experience fatigue December 24th, 2021

Nanodiamonds are key to efficient hydrogen purification: Nanodiamonds may be tiny, but they can help with one of the biggest problems facing humanity today: Climate change December 17th, 2021

Texas A&M chemist recognized for paving the way toward artificial intelligence and energy conversion December 10th, 2021

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

Announcements

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

UT Southwestern develops nanotherapeutic to ward off liver cancer January 14th, 2022

The free-energy principle explains the brain January 14th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Photon recycling – The key to high-efficiency perovskite solar cells January 14th, 2022

Tuning the bonds of paired quantum particles to create dissipationless flow: A tunable platform made from atomically thin materials may help researchers figure out how to create a robust quantum condensate that can flow without losing energy January 14th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

New photonic effect could speed drug development: Twisted semiconductor nanostructures convert red light into the twisted blue light in tiny volumes, which may help develop chiral drugs January 14th, 2022

Military

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Physicists watch as ultracold atoms form a crystal of quantum tornadoes: The new observations record a key crossover from classical to quantum behavior January 7th, 2022

Series of preclinical studies supports the Army’s pan-coronavirus vaccine development strategy December 17th, 2021

Light speed advances: UD Prof. Tingyi Gu receives DARPA Young Faculty Award December 3rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project