Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication

Author and co-authors with figure from paper. Clockwise from top left: Lead author Yuri Barsukov with co-authors Igor Kaganovich, Alexander Khrabry, Omesh Dwivedi, Sierra Jubin, Stephane Ethier.

CREDIT
Batalova Valentina, Elle Starkman/Office of Communications, Elle Starkman, Han Wei, Hannah Smith, Elle Starkman. Collage by Elle Starkman.
Author and co-authors with figure from paper. Clockwise from top left: Lead author Yuri Barsukov with co-authors Igor Kaganovich, Alexander Khrabry, Omesh Dwivedi, Sierra Jubin, Stephane Ethier. CREDIT Batalova Valentina, Elle Starkman/Office of Communications, Elle Starkman, Han Wei, Hannah Smith, Elle Starkman. Collage by Elle Starkman.

Abstract:
Scientists have identified a chemical pathway to an innovative insulating nanomaterial that could lead to large-scale industrial production for a variety of uses – including in spacesuits and military vehicles. The nanomaterial -- thousands of times thinner than a human hair, stronger than steel and noncombustible -- could block radiation to astronauts and help shore up military vehicle armor, for example.

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication

Princeton, NJ | Posted on September 17th, 2021

Collaborative researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) have proposed a step-by-step chemical pathway to the precursors of this nanomaterial, known as boron nitride nanotubes (BNNT), which could lead to their large-scale production.

“Pioneering work”

The breakthrough brings together plasma physics and quantum chemistry and is part of the expansion of research at PPPL. “This is pioneering work that takes the Laboratory in new directions,” said PPPL physicist Igor Kaganovich, principal investigator of the BNNT project and co-author of the paper that details the results in the journal Nanotechnology.

Collaborators identified the key chemical pathway steps as the formation of molecular nitrogen and small clusters of boron, which can chemically react together as the temperature created by a plasma jet cools, said lead author Yuri Barsukov of the Peter the Great St. Petersburg Polytechnic University. He developed the chemical reaction pathways by performing quantum chemistry simulations with the assistance of Omesh Dwivedi, a PPPL intern from Drexel University, and Sierra Jubin, a graduate student in the Princeton Program in Plasma Physics.

The interdisciplinary team included Alexander Khrabry, a former PPPL researcher now at Lawrence Livermore National Laboratory who developed a thermodynamic code used in this research, and PPPL physicist Stephane Ethier who helped the students compile the software and set up the simulations.

The results solved the mystery of how molecular nitrogen, which has the second strongest chemical bond among diatomic, or double-atom molecules, can nonetheless break apart through reactions with boron to form various boron-nitride molecules, Kaganovich said. “We spent considerable amount of time thinking about how to get boron - nitride compounds from a mixture of boron and nitrogen,” he said. “What we found was that small clusters of boron, as opposed to much larger boron droplets, readily interact with nitrogen molecules. That’s why we needed a quantum chemist to go through the detailed quantum chemistry calculations with us.”

BNNTs have properties similar to carbon nanotubes, which are produced by the ton and found in everything from sporting goods and sportswear to dental implants and electrodes. But the greater difficulty of producing BNNTs has limited their applications and availability.

Chemical pathway

Demonstration of a chemical pathway to the formation of BNNT precursors could facilitate BNNT production. The process of BNNT synthesis begins when scientists use a 10,000-degree plasma jet to turn boron and nitrogen gas into plasma consisting of free electrons and atomic nuclei, or ions, embedded in a background gas. This shows how the process unfolds:

• The jet evaporates the boron while the molecular nitrogen largely stays intact;

• The boron condenses into droplets as the plasma cools;

• The droplets form small clusters as the temperature falls to a few thousand degrees;

• The critical next step is the reaction of nitrogen with small clusters of boron molecules to form boron-nitrogen chains;

• The chains grow longer by colliding with one another and fold into precursors of boron nitride nanotubes.

“During the high-temperature synthesis the density of small boron clusters is low,” Barsukov said. “This is the main impediment to large-scale production.”

The findings have opened a new chapter in BNNT nanomaterial synthesis. “After two years of work we have found the pathway,” Kaganovich said. “As boron condenses it forms big clusters that nitrogen doesn’t react with. But the process starts with small clusters that nitrogen reacts with and there is still a percentage of small clusters as the droplets grow larger,” he said.

“The beauty of this work,” he added, “is that since we had experts in plasma and fluid mechanics and quantum chemistry we could go through all these processes together in an interdisciplinary group. Now we need to compare possible BNNT output from our model with experiments. That will be the next stage of modeling.”

Support for this research comes from the DOE Office of Science.

####

About PPPL
PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

For more information, please click here

Contacts:
John Greenwald
DOE/Princeton Plasma Physics Laboratory

Office: 609-243-2672

Copyright © PPPL

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Laboratories

New quantum network shares information at a scale practical for future real-world applications: Researchers enable real-time adjustments to communication among three remote nodes in a quantum network April 22nd, 2022

'Frustrated' nanomagnets order themselves through disorder: Interactions between alternating layers of exotic, 2D material create 'entropy-driven order' in a structured system of magnets at equilibrium April 8th, 2022

Could quantum technology be New Mexico’s next economic boon? Quantum New Mexico Coalition aims to establish state as national hub April 1st, 2022

Probing the inner workings of high-fidelity quantum processors: Scientists use gate set tomography to discover and validate a silicon qubit breakthrough March 25th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

The future of desalination? A fast, efficient, selective membrane for purifying saltwater May 13th, 2022

Possible Futures

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

CEA and Startup C12 Join Forces to Develop Next-Generation Quantum Computers with Multi-Qubit Chips at Wafer Scale March 25th, 2022

Studied for clean energy, carbon nanotubes find new potential in anticancer drug delivery: Short carbon nanotubes in liposome membranes help fuse the liposomes and cancer cells to directly deliver a cancer-killing drug January 28th, 2022

A single molecule makes a big splash in the understanding of the two types of water January 7th, 2022

Discoveries

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Materials/Metamaterials

When a band falls flat: Searching for flatness in materials: International collaboration, led by DIPC and Princeton, creates a catalogue of materials that could impact quantum technologies April 1st, 2022

Studying atomic structure of aluminum alloys for manufacturing modern aircraft March 25th, 2022

Unexplored dimensions of porous metamaterials: Researchers unlock hidden potential in a long-studied group of materials March 18th, 2022

Copper doping enables safer, cost-effective hydrogen peroxide production February 11th, 2022

Announcements

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

Military

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Self-propelled, endlessly programmable artificial cilia: Simple microstructures that bend, twist and perform stroke-like motions could be used for soft robotics, medical devices and more May 6th, 2022

New hardware integrates mechanical devices into quantum tech April 22nd, 2022

Graphene-hBN breakthrough to spur new LEDs, quantum computing: Study uncovers first method for producing high-quality, wafer-scale, single-layer hexagonal boron nitride April 15th, 2022

Aerospace/Space

University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications May 13th, 2022

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Studying atomic structure of aluminum alloys for manufacturing modern aircraft March 25th, 2022

Turning any camera into a polarization camera: Metasurface attachment can be used with almost any optical system, from machine vision cameras to telescopes March 18th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project