Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Non-linear effects in coupled optical microcavities

On the left: a spatial cross-section of the studied structure. Two optical microcavities (broad black stripes) are visible, surrounded by a multilayer Bragg mirrors. The image shows the spatial distribution of magnesium. It was obtained in a transmission electron microscope in the measurement of energy dispersion X-ray spectroscopy. On the right: angularly resolved emission spectrum of a system of two coupled optical microcavities recorded for excitation power above the polariton lasing threshold. The white lines represent the calculated polariton levels. Parametric polariton scattering is visible as bright points inside the blue rectangles. (Source: K. Sobczak, CNBCh UW, K. Sawicki, Faculty of Physics UW)

CREDIT
K. Sobczak, CNBCh UW, K. Sawicki, Faculty of Physics UW
On the left: a spatial cross-section of the studied structure. Two optical microcavities (broad black stripes) are visible, surrounded by a multilayer Bragg mirrors. The image shows the spatial distribution of magnesium. It was obtained in a transmission electron microscope in the measurement of energy dispersion X-ray spectroscopy. On the right: angularly resolved emission spectrum of a system of two coupled optical microcavities recorded for excitation power above the polariton lasing threshold. The white lines represent the calculated polariton levels. Parametric polariton scattering is visible as bright points inside the blue rectangles. (Source: K. Sobczak, CNBCh UW, K. Sawicki, Faculty of Physics UW) CREDIT K. Sobczak, CNBCh UW, K. Sawicki, Faculty of Physics UW

Abstract:
Scientists from the Faculty of Physics of the University of Warsaw demonstrated exciton-polariton lasing and parametric scattering of exciton-polaritons in a system of coupled optical microcavities. The results have been published in the prestigious journal "Nanophotonics".

Non-linear effects in coupled optical microcavities

Warsaw, Poland | Posted on August 5th, 2021

Exciton-polaritons are quasiparticles formed by a strong coupling between excitons and photons in a semiconductor. Their bosonic nature and non-linear interactions allow the observation of fascinating phenomena such as Bose-Einstein condensation of polaritons and polariton lasing, which, unlike typical lasering, occurs without occupation inversion.


Coupled microcavity systems, such as those based on two coupled optical microcavities, offer a promising multi-level platform for basic research and practical applications. The unique structure consisting of several dozen of layers with the precisely defined thickness (each with an accuracy of a few nanometers) was fabricated in the MBE laboratory at the Faculty of Physics, University of Warsaw.



In the presented work, we study non-linear effects in a system of two coupled optical microcavities. Bose-Einstein condensation of polaritons and polariton lasing occur at the two lowest energy levels of an overall four-level system. This is a surprising result in the context of what has previously been observed in single microcavities, where condensation took place in the system's ground state. Emission dynamics measurements have shown that in the present case the condensates of different energies share the same lasing threshold, but do not appear simultaneously, i.e. they form and disappear subsequently, one by one. Moreover, the transition to the condensate state is accompanied by an energy-degenerate parametric scattering of polaritons, i.e. the one in which the state of the crystal is preserved before and after the scattering process - explains Krzysztof Sawicki. In previous studies on coupled microcavities, parametric scattering was obtained using strictly resonant excitation. The non-resonant excitation used in the present work enables spectral separation of the signal from the excitation laser, which is a promising result from the point of view of implementing sources of entangled photons based on polaritons.



Previously, a coupled microcavity system was used to demonstrate energy transfer over 2 micrometers, mediated by polariton states. This is a record distance taking into account the typical nanometer scale of interaction between excitons in a semiconductor. We expect our results to open the way to the research on new types of non-linear effects in multi-level polariton systems. Our work is essential for such rapidly developing fields as, for example, all-optical quantum computing, since the non-linear interactions in a multi-level system may enable the implementation of logic systems based on polaritons – adds Jan Suffczynski.



For more information, please contact with Krzysztof Sawicki or Jan Suffczynski from the Laboratory of Ultrafast MagnetoSpectoscopy (LUMS).





Physics and astronomy at the University of Warsaw appeared in 1816 as part of the then Faculty of Philosophy. In 1825, the Astronomical Observatory was established. Currently, the Faculty of Physics at the University of Warsaw consists of the following institutes: Experimental Physics, Theoretical Physics, Geophysics, the Department of Mathematical Methods and the Astronomical Observatory. The research covers almost all areas of modern physics, on scales from quantum to cosmological. The Faculty's research and teaching staff consist of over 200 academic teachers, 81 of whom are professors. About 1,000 students and over 170 doctoral students study at the Faculty of Physics at the University of Warsaw.

####

For more information, please click here

Contacts:
Agata Meissner

Office: 48-225-532-573
Expert Contact

Jan Suffczynski

Office: +48 225532707

Copyright © University of Warsaw

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

SCIENTIFIC PAPERS:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Optical computing/Photonic computing

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Nanoelectronics

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022

Reduced power consumption in semiconductor devices September 23rd, 2022

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project