Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Superconductivity in high-Tc cuprates: ‘from maximal to minimal dissipation’ - a new paradigm?

'Artist’s impression: the description of electrons in high-temperature superconductors (round particles) exhibiting maximal dissipation in the normal state before passing into a state of minimal (zero) dissipation in the superconducting state.

CREDIT
Courtesy of Erik van Heumen (Amsterdam).
'Artist’s impression: the description of electrons in high-temperature superconductors (round particles) exhibiting maximal dissipation in the normal state before passing into a state of minimal (zero) dissipation in the superconducting state. CREDIT Courtesy of Erik van Heumen (Amsterdam).

Abstract:
Conventional superconductivity

Superconductivity is a fascinating phenomenon in which, below a so-called critical temperature, a material loses all its resistance to electrical currents. In certain materials, at low temperatures, all electrons are entangled in a single, macroscopic quantum state, meaning that they no longer behave as individual particles but as a collective – resulting in superconductivity. The general theory for this collective electron behaviour has been known for a long time, but one family of materials, the cuprates, refuses to conform to the paradigm. They also possess the highest ambient-pressure superconducting transition temperatures known to exist. It was long thought that for these materials the mechanism that ‘glues together’ the electrons must be special, but recently the attention has shifted and now physicists investigate the non-superconducting states of cuprates, hoping to find clues to the origin of high-temperature superconductivity and its distinction from normal superconductors.

Superconductivity in high-Tc cuprates: ‘from maximal to minimal dissipation’ - a new paradigm?

Bristol, UK | Posted on July 30th, 2021

High-temperature superconductivity

Most superconductors, when heated to exceed their critical temperature, change into ‘ordinary’ metals. The quantum entanglement that causes the collective behaviour of the electrons fades away, and the electrons start to behave like an ordinary ‘gas’ of charged particles.

Cuprates are special, however. Firstly, as mentioned above, because their critical temperature is considerably higher than that of other superconductors. Secondly, they have very special measurable properties even in their ‘metallic phase’. In 2009, physicist Prof Nigel Hussey and collaborators observed experimentally that the electrons in these materials form a new type of structure, different from that in ordinary metals, thereby establishing a new paradigm that scientists now call the ‘strange metal’. Specifically, the resistivity at low temperatures was found to be proportional to temperature, not at a singular point in the temperature versus doping phase diagram (as expected for a metal close to a magnetic quantum critical point) but over an extended range of doping. This extended criticality became a defining feature of the ‘strange metal’ phase from which superconductivity emerges in the cuprates.

Magnetoresistance in a strange metal

In the first of these new reports, EPSRC Doctoral Prize Fellow Jakes Ayres and PhD student Maarten Berben (based at HFML-FELIX in Nijmegen, the Netherlands) studied the magnetoresistance – the change in resistivity in a magnetic field – and discovered something unexpected. In contrast to the response of usual metals, the magnetoresistance was found to follow a peculiar response in which magnetic field and temperature appear in quadrature. Such behaviour had only been observed previously at a singular quantum critical point, but here, as with the zero-field resistivity, the quadrature form of the magnetoresistance was observed over an extended range of doping. Moreover, the strength of the magnetoresistance was found to be two orders of magnitude larger than expected from conventional orbital motion and insensitive to the level of disorder in the material as well as to the direction of the magnetic field relative to the electrical current. These features in the data, coupled with the quadrature scaling, implied that the origin of this unusual magnetoresistance was not the coherent orbital motion of conventional metallic carriers, but rather a non-orbital, incoherent motion from a different type of carrier whose energy was being dissipated at the maximal rate allowed by quantum mechanics.

From maximal to minimal dissipation

Prof Hussey said: “Taking into account earlier Hall effect measurements, we had compelling evidence for two distinct carrier types in cuprates - one conventional, the other ‘strange’. The key question then was which type was responsible for high-temperature superconductivity? Our team led by Matija Čulo and Caitlin Duffy then compared the evolution of the density of conventional carriers in the normal state and the pair density in the superconducting state and came to a fascinating conclusion; that the superconducting state in cuprates is in fact composed of those exotic carriers that undergo such maximal dissipation in the metallic state. This is a far cry from the original theory of superconductivity and suggests that an entirely new paradigm is needed, one in which the strange metal takes centre stage.”

####

For more information, please click here

Contacts:
Laura Thomas

Office: 07-977-983-814

Copyright © University of Bristol

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Quantum Physics

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Putting a new theory of many-particle quantum systems to the test: Experiments show that generalized hydrodynamics accurately simulates an out-of-equilibrium quantum system September 3rd, 2021

Researchers use gold film to enhance quantum sensing with qubits in a 2D material September 3rd, 2021

Possible Futures

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Discoveries

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Announcements

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Good for groundwater – bad for crops? Plastic particles release pollutants in upper soil layers: The environmental geoscientists at the Centre for Microbiology and Environmental Systems Science (CMESS) focused on a variety of parameters that contribute to plastic pollution in far September 17th, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project