Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers find 'layer Hall effect' in a 2D topological Axion antiferromagnet: It is first experimental evidence of this type of quantum state and can one day help generate a magneto-electric effect

Abstract:
A team of researchers have discovered a 'layer Hall effect' in a 2D topological Axion antiferromagnet.

Researchers find 'layer Hall effect' in a 2D topological Axion antiferromagnet: It is first experimental evidence of this type of quantum state and can one day help generate a magneto-electric effect

Cambridge, MA | Posted on July 30th, 2021

The work, published in the journal Nature, is believed to be the first experimental evidence of this type of quantum state and can one day help generate a magneto-electric effect that can lead to the next-generation of electronic devices, sensors, detectors and memory devices that use magnetic strips, such as credit cards.

“The Axion insulator is a new quantum state with truly exciting quantum properties.” said Suyang Xu, an assistant professor of chemistry at Harvard and a lead author of the report. “For a long time, researchers have been searching for materials that can realize this state. Finally, we have found a good one!”

The new study, — completed by researchers from Harvard and other universities in the U.S. and abroad — focuses on weakly-interacting particles called axions. Postulated by theorists more than 30 years ago, they are one of the primary candidates for the Dark Matter, a mysterious form of matter thought to account for about 85 percent of the universe. The researchers created an experimental platform called the topological Axion insulator that would allow them to study the behavior of Axion particles and their mysterious properties. It was recently proposed that the axions could be realized as quasi-particles in solid state materials such as quantum topological Axion insulators.

The researchers designed quantum device made of manganese bismuth telluride (MnBi2Te4). The material was layered into a two-dimensional crystal structure.

“We used advanced fabrication to thin the material down into only a few nanometer and make it into some sort of quantum device. Then we measured the electronic behavior at very low temperatures,” said Xu.

The researchers found what they coined as the layer Hall effect, in which electrons from the top and bottom layers spontaneously defect in opposite directions without an applied magnetic force. In a standard Hall effect, it is a magnetic force that brings on the movement of the electrons in the system while here it is due to the inherent topology of the materials.

The researchers believe this layer Hall effect signals a topological Axion insulating state and can be controlled by applying both an electric field and a magnetic field – a force known as an Axion field. They plan on studying the dynamics of the system further and pinpointing the magneto-electric effect that can lead to technological leaps.

“Our next goal is to directly demonstrate the quantized magneto-electric effect, which can be utilized to realize next generation memories that are extremely robust, precise and ultrafast,” said Xu.

####

For more information, please click here

Contacts:
Juan Siliezar

Office: 617-384-0027

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper:

Related News Press

News and information

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Quantum Physics

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Putting a new theory of many-particle quantum systems to the test: Experiments show that generalized hydrodynamics accurately simulates an out-of-equilibrium quantum system September 3rd, 2021

Researchers use gold film to enhance quantum sensing with qubits in a 2D material September 3rd, 2021

Magnetism/Magnons

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Possible Futures

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Chip Technology

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Memory Technology

RUDN University chemists obtained an unusual planar nickel complex exhibiting magnetic properties July 16th, 2021

Discovery could help lengthen lifespan of electronic devices: The research could lead to electronics being designed with better endurance April 9th, 2021

Discovery suggests new promise for nonsilicon computer transistors: Once deemed suitable only for high-speed communication systems, an alloy called InGaAs might one day rival silicon in high-performance computing December 9th, 2020

New insights into memristive devices by combining incipient ferroelectrics and graphene November 27th, 2020

Sensors

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Engineers develop prototype of electronic nose September 3rd, 2021

Discoveries

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Announcements

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Good for groundwater – bad for crops? Plastic particles release pollutants in upper soil layers: The environmental geoscientists at the Centre for Microbiology and Environmental Systems Science (CMESS) focused on a variety of parameters that contribute to plastic pollution in far September 17th, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

Quantum nanoscience

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Researchers use gold film to enhance quantum sensing with qubits in a 2D material September 3rd, 2021

Best of both worlds—Combining classical and quantum systems to meet supercomputing demands: Scientists detect strongly entangled pair of protons on a nanocrystalline silicon surface, potentially enabling new levels of high-speed computing August 13th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project