Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists release new AI-based tools to accelerate functional electronic materials discovery: The work could allow scientists to accelerate the discovery of materials showing a metal-insulator transition

Using machine-learning tools, the scientists identified important features to characterize materials that exhibit a metal-insulator transition.

CREDIT
Northwestern University and the Massachusetts Institute of Technology
Using machine-learning tools, the scientists identified important features to characterize materials that exhibit a metal-insulator transition. CREDIT Northwestern University and the Massachusetts Institute of Technology

Abstract:
An interdisciplinary team of scientists from Northwestern Engineering and the Massachusetts Institute of Technology has used artificial intelligence (AI) techniques to build new, free, and easy-to-use tools that allow scientists to accelerate the rate of discovery and study of materials that exhibit a metal-insulator transition (MIT), as well as identify new features that can describe this class of materials.

Scientists release new AI-based tools to accelerate functional electronic materials discovery: The work could allow scientists to accelerate the discovery of materials showing a metal-insulator transition

Evanston, IL | Posted on July 30th, 2021

One of the keys to making microelectronic devices faster and more energy efficient, as well as designing new computer architectures, is the discovery of new materials with tunable electronic properties. The electrical resistivity of MITs may exhibit metallic or insulating electronic behavior, depending on the properties of the environment.

Although some materials that exhibit MITs have already been implemented in electronic devices, only fewer than 70 with this property are known, and even fewer exhibit the performance necessary for integration into new electronic devices. Further, these materials switch electrically due to a variety of mechanisms, which makes obtaining a general understanding of this class of materials difficult.

“By providing a database, online classifier, and new set of features, our work opens new pathways to the understanding and discovery in this class of materials,” said James Rondinelli, Morris E. Fine Professor in Materials and Manufacturing at the McCormick School of Engineering and the study’s corresponding primary investigator. “Further, this work can be used by other scientists and applied to other material classes to accelerate the discovery and understanding of other classes of quantum materials.”

“One of the key elements of our tools and models is that they are accessible to a wide audience; scientists and engineers don’t need to understand machine learning to use them, just as one doesn’t need a deep understanding of search algorithms to navigate the internet,” said Alexandru Georgescu, postdoctoral researcher in the Rondinelli lab who is the study’s first co-author.

The team presented its research in the paper “Database, Features, and Machine Learning Model to Identify Thermally Driven Metal–Insulator Transition Compounds,” published July 6 in the academic journal Chemistry of Materials.

Daniel Apley, professor of industrial engineering and management sciences at Northwestern Engineering, was a co-primary investigator. Elsa A. Olivetti, Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering at the Massachusetts Institute of Technology, was also a co-primary investigator.

Using their existing knowledge of MIT materials, combined with Natural Language Processing (NLP), the researchers scoured existing literature to identify the 60 known MIT compounds, as well as 300 materials that are similar in chemical composition but do not show an MIT. The team has provided the resulting materials – as well as features it’s identified as relevant – to scientists as a freely available database for public use.

Then using machine-learning tools, the scientists identified important features to characterize these materials. They confirmed the importance of certain features, such as the distances between transition metal ions or the electrostatic repulsion between some of them known, as well as the accuracy of the model. They also identified new, previously underappreciated features, such as how different the atoms are in size from each other, or measures of how ionic or covalent the inter-atomic bonds are. These features were found to be critical in developing a reliable machine learning model for MIT materials, which has been packaged into an openly accessible format.

“This free tool allows anyone to quickly obtain probabilistic estimates on whether the material they are studying is a metal, insulator, or a metal-insulator transition compound,” Apley said.

Work on this study was born from projects within the Predictive Science and Engineering Design (PS&ED) interdisciplinary cluster program sponsored by The Graduate School at Northwestern. The study was also supported by funding from the Designing Materials to Revolutionize and Engineer our Future (DMREF) program of the National Science Foundation and the Advanced Research Projects Agency – Energy’s (ARPA-E) DIFFERENTIATE program, which seeks to use emerging AI technologies to tackle major energy and environmental challenges.

####

For more information, please click here

Contacts:
Brian Sandalow

Office: 847-467-3335

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

DOI:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project