Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices

A team of researchers created a new method to capture ultrafast atomic motions inside the tiny switches that control the flow of current in electronic circuits. Pictured here are Aditya Sood (left) and Aaron Lindenberg (right).

CREDIT
Greg Stewart/SLAC National Accelerator Laboratory
A team of researchers created a new method to capture ultrafast atomic motions inside the tiny switches that control the flow of current in electronic circuits. Pictured here are Aditya Sood (left) and Aaron Lindenberg (right). CREDIT Greg Stewart/SLAC National Accelerator Laboratory

Abstract:
Electronic circuits that compute and store information contain millions of tiny switches that control the flow of electric current. A deeper understanding of how these tiny switches work could help researchers push the frontiers of modern computing.

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices

Menlo Park, CA | Posted on July 16th, 2021

Now scientists have made the first snapshots of atoms moving inside one of those switches as it turns on and off. Among other things, they discovered a short-lived state within the switch that might someday be exploited for faster and more energy-efficient computing devices.

The research team from the Department of Energy's SLAC National Accelerator Laboratory, Stanford University, Hewlett Packard Labs, Penn State University and Purdue University described their work in a paper published in Science today.

"This research is a breakthrough in ultrafast technology and science," says SLAC scientist and collaborator Xijie Wang. "It marks the first time that researchers used ultrafast electron diffraction, which can detect tiny atomic movements in a material by scattering a powerful beam of electrons off a sample, to observe an electronic device as it operates."

Capturing the cycle

For this experiment, the team custom-designed miniature electronic switches made of vanadium dioxide, a prototypical quantum material whose ability to change back and forth between insulating and electrically conducting states near room temperature could be harnessed as a switch for future computing. The material also has applications in brain-inspired computing because of its ability to create electronic pulses that mimic the neural impulses fired in the human brain.

The researchers used electrical pulses to toggle these switches back and forth between the insulating and conducting states while taking snapshots that showed subtle changes in the arrangement of their atoms over billionths of a second. Those snapshots, taken with SLAC's ultrafast electron diffraction camera, MeV-UED, were strung together to create a molecular movie of the atomic motions.

"This ultrafast camera can actually look inside a material and take snapshots of how its atoms move in response to a sharp pulse of electrical excitation," said collaborator Aaron Lindenberg, an investigator with the Stanford Institute for Materials and Energy Sciences (SIMES) at SLAC and a professor in the Department of Materials Science and Engineering at Stanford University. "At the same time, it also measures how the electronic properties of that material change over time."

With this camera, the team discovered a new, intermediate state within the material. It is created when the material responds to an electric pulse by switching from the insulating to the conducting state.

"The insulating and conducting states have slightly different atomic arrangements, and it usually takes energy to go from one to the other," said SLAC scientist and collaborator Xiaozhe Shen. "But when the transition takes place through this intermediate state, the switch can take place without any changes to the atomic arrangement."

Opening a window on atomic motion

Although the intermediate state exists for only a few millionths of a second, it is stabilized by defects in the material.

To follow up on this research, the team is investigating how to engineer these defects in materials to make this new state more stable and longer lasting. This will allow them to make devices in which electronic switching can occur without any atomic motion, which would operate faster and require less energy.

"The results demonstrate the robustness of the electrical switching over millions of cycles and identify possible limits to the switching speeds of such devices," said collaborator Shriram Ramanathan, a professor at Purdue. "The research provides invaluable data on microscopic phenomena that occur during device operations, which is crucial for designing circuit models in the future."

The research also offers a new way of synthesizing materials that do not exist under natural conditions, allowing scientists to observe them on ultrafast timescales and then potentially tune their properties.

"This method gives us a new way of watching devices as they function, opening a window to look at how the atoms move," said lead author and SIMES researcher Aditya Sood. "It is exciting to bring together ideas from the traditionally distinct fields of electrical engineering and ultrafast science. Our approach will enable the creation of next-generation electronic devices that can meet the world's growing needs for data-intensive, intelligent computing."

###

MeV-UED is an instrument of the LCLS user facility, operated by SLAC on behalf of the DOE Office of Science, who funded this research.

####

About SLAC National Accelerator Laboratory
SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

For more information, please click here

Contacts:
Manuel Gnida

650-926-2632

@SLAClab

Copyright © SLAC National Accelerator Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Citation: Sood et al., Science, 16 July 2021 (10.1126/science.abc0652):

Related News Press

News and information

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Quantum Physics

Switching on a superfluid: Exotic phase transitions unlock pathways to future, superfluid-based technologies September 24th, 2021

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Laboratories

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Patterning silicon at the one nanometer scale: Scientists engineer materials’ electrical and optical properties with plasmon engineering August 13th, 2021

Verizon and Zurich Instruments join Q-NEXT national quantum science center August 6th, 2021

Videos/Movies

The National Space Society Joins the Progressive Policy Institute in Supporting Rapid Development of Space Solar Power: Orbiting Solar Power Stations Would Help to Save the Environment August 20th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Govt.-Legislation/Regulation/Funding/Policy

UTA project aims to extend life of concrete, cement by adding nanoscale wood fibers: Wood fibers key to sustainable concrete, cement September 24th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Stretching the capacity of flexible energy storage September 10th, 2021

Possible Futures

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Chip Technology

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Switching on a superfluid: Exotic phase transitions unlock pathways to future, superfluid-based technologies September 24th, 2021

Discoveries

Fabricating MgB2 superconductors using spark plasma sintering and pulse magnetization: New research suggests that highly dense MgB2 bulks have improved mechanical and superconducting properties September 24th, 2021

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Announcements

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

Researchers use breakthrough method to answer key question about electron states September 24th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

MXene-GaN van der Waals metal-semiconductor junctions for high performance photodetection September 24th, 2021

Fabricating MgB2 superconductors using spark plasma sintering and pulse magnetization: New research suggests that highly dense MgB2 bulks have improved mechanical and superconducting properties September 24th, 2021

Brought into line: FAU physicists control the flow of electron pulses through a nanostructure channel September 24th, 2021

Quantum nanoscience

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Researchers use gold film to enhance quantum sensing with qubits in a 2D material September 3rd, 2021

Best of both worlds—Combining classical and quantum systems to meet supercomputing demands: Scientists detect strongly entangled pair of protons on a nanocrystalline silicon surface, potentially enabling new levels of high-speed computing August 13th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project