Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers tame silicon to interact with light for next-generation microelectronics

Own mode of the silicon photonic crystal layer.

CREDIT
Sergey Dyakov, Sergey Tikhodeev, Nikolay Gippius
Own mode of the silicon photonic crystal layer. CREDIT Sergey Dyakov, Sergey Tikhodeev, Nikolay Gippius

Abstract:
Skoltech researchers and their colleagues from RAS Institute for Physics of Microstructures, Lobachevsky State University of Nizhny Novgorod, ITMO University, Lomonosov Moscow State University, and A.M. Prokhorov General Physics Institute have found a way to increase photoluminescence in silicon, the notoriously poor emitter and absorber of photons at the heart of all modern electronics. This discovery may pave the way to photonic integrated circuits, boosting their performance. The paper was published in the journal Laser and Photonics Reviews.

Researchers tame silicon to interact with light for next-generation microelectronics

Moscow, Russia | Posted on June 11th, 2021

"Natural selection" in semiconductor technology over almost 80 years has led to silicon emerging as the predominant material for chips. Most digital microcircuits are created using CMOS technology (CMOS), which stands for complementary metal-oxide-semiconductor. Yet manufacturers have hit a wall on the way to increasing their performance even further: heat release due to high density of elements in CMOS circuits.

One potential workaround is reducing heat generation by switching from metallic connections between elements in microcircuits to optical ones: unlike electrons in conductors, photons can travel giant distances in wavegiudes with minimal heat losses.

"The transition to CMOS-compatible photonic integrated circuits will also make it possible to significantly increase the information transfer rate within a chip and between individual chips in modern computers, making them faster. Unfortunately, silicon itself weakly interacts with light: it is a poor emitter and a poor absorber of photons. Therefore, taming silicon to interact with light effectively is an essential task," Sergey Dyakov, senior researcher at Skoltech and the first author of the paper, says.

Dyakov and his colleagues have managed to enhance silicon-based photoluminescence using germanium quantum dots and a specially designed photonic crystal. They used a resonator based on bound states in the continuum, an idea borrowed from quantum mechanics: these resonators create effective confinement of light inside them since the symmetry of the electromagnetic field inside the resonator does not correspond to the symmetry of the electromagnetic waves of the surrounding space.

They also chose germanium nanoislands as a source of luminescence, which can be embedded into the desired place on a silicon chip. "The use of bound states in the continuum increased luminescence intensity by more than a hundred times," Dyakov says, noting that it can lead us to CMOS-compatible photonic integrated circuits.

"The results open up new possibilities for creating efficient radiation sources based on silicon, built into the circuits of modern microelectronics with optical signal processing. There are currently lots of groups working on creating light-emitting diodes based on such structures and the principles of their coupling with other elements on an optoelectronic chip," Professor Nikolay Gippius, head of Nanophotonics Theory group at the Center of Photonics and Quantum Materials at Skoltech, says.

####

For more information, please click here

Contacts:
Ilyana Zolotareva

897-777-14699

Copyright © Skolkovo Institute of Science and Technology (Skoltech)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Possible Futures

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Chip Technology

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Rice ‘metalens’ could disrupt vacuum UV market: Solid-state nanophotonic technology could potentially replace cabinets of equipment May 6th, 2022

Optical computing/Photonic computing

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Rice ‘metalens’ could disrupt vacuum UV market: Solid-state nanophotonic technology could potentially replace cabinets of equipment May 6th, 2022

Nanoelectronics

The physics of a singing saw: Insights on centuries-old folk instrument is underpinned by a mathematical principle that may pave the way for high-quality resonators for sensing, electronics and more April 22nd, 2022

Eyebrow-raising: Researchers reveal why nanowires stick to each other February 11th, 2022

Visualizing temperature transport: An unexpected technique for nanoscale characterization November 19th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Discoveries

Going gentle on mechanical quantum systems: New experimental work establishes how quantum properties of mechanical quantum systems can be measured without destroying the quantum state May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Announcements

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution May 13th, 2022

Photonics/Optics/Lasers

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Rice ‘metalens’ could disrupt vacuum UV market: Solid-state nanophotonic technology could potentially replace cabinets of equipment May 6th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project