Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Implantable 'living pharmacy' could control body's sleep/wake cycles: Project receives DARPA contract worth up to $33 million over 4 1/2 years

In this artistic illustration, a user with an NTRAIN implant and its accompanying external hub works in the field. The user inputs a desired time shift (due to shift work or travel across time zones). Based on cues from the body’s physiology, the external hub detects the user’s circadian rhythm, and triggers the implant to produce precisely-dosed peptide therapies.
In this artistic illustration, a user with an NTRAIN implant and its accompanying external hub works in the field. The user inputs a desired time shift (due to shift work or travel across time zones). Based on cues from the body’s physiology, the external hub detects the user’s circadian rhythm, and triggers the implant to produce precisely-dosed peptide therapies.

Abstract:
•Device will harness the same peptides the body makes to regulate sleep cycles
•Researchers aim to halve the time it takes to recover from disrupted sleep/wake cycles, including from jetlag and shift work
•Device could be a powerful tool for military personnel and shift workers, including first responders

Implantable 'living pharmacy' could control body's sleep/wake cycles: Project receives DARPA contract worth up to $33 million over 4 1/2 years

Evanston, IL | Posted on May 13th, 2021

A Northwestern University-led team of researchers has signed a cooperative agreement with the Defense Advanced Research Projects Agency (DARPA) to develop a wireless, fully implantable device that will control the body’s circadian clock, halving the time it takes to recover from disrupted sleep/wake cycles.



The first phase of the highly interdisciplinary program will focus on developing the implant. The second phase, contingent on the first, will validate the device. If that milestone is met, then researchers will test the device in human trials, as part of the third phase. The full funding corresponds to $33 million over 4 1/2 years.



Nicknamed the “living pharmacy,” the device could be a powerful tool for military personnel, who frequently travel across multiple time zones, and shift workers including first responders, who vacillate between overnight and daytime shifts.



Called NTRAIN (Normalizing Timing of Rhythms Across Internal Networks of Circadian Clocks), the project is a part the Advanced Acclimation and Protection Tool for Environmental Readiness (ADAPTER) program, DARPA’s new program to help address the challenges of travel, including jetlag, fatigue and gastrointestinal issues. Circadian clock research will be led by sleep experts at Northwestern’s Center for Sleep and Circadian Biology (CSCB). Synthetic biologists at Rice University will lead cellular engineering efforts. And Northwestern engineers will join researchers from Rice and Carnegie Mellon universities and Blackrock Microsystems to develop bioelectronic components.



Combining synthetic biology with bioelectronics, the team will engineer cells to produce the same peptides that the body makes to regulate sleep cycles, precisely adjusting timing and dose with bioelectronic controls. When the engineered cells are exposed to light, they will generate precisely dosed peptide therapies.



“This control system allows us to deliver a peptide of interest on demand, directly into the bloodstream,” said Northwestern’s Jonathan Rivnay, principal investigator of the project. “No need to carry drugs, no need to inject therapeutics and — depending on how long we can make the device last — no need to refill the device. It’s like an implantable pharmacy on a chip that never runs out.”



Rivnay is an assistant professor of biomedical engineering in Northwestern’s McCormick School of Engineering. Other Northwestern members of the interdisciplinary team are professors Fred W. Turek, Martha Hotz Vitaterna, Josiah Hester, Guillermo Ameer, Peng Jiang and Phyllis C. Zee — representing Weinberg College of Arts and Sciences, McCormick and Feinberg School of Medicine.



Beyond controlling circadian rhythms, the researchers believe this technology could be modified to release other types of therapies with precise timing and dosing for potentially treating pain and disease. The DARPA program also will help researchers better understand sleep/wake cycles in general.



“The experiments carried out in these studies will enable new insights into how internal circadian organization is maintained,” said Turek, who co-leads the sleep team with Vitaterna. “These insights will lead to new therapeutic approaches for sleep disorders as well as many other physiological and mental disorders, including those associated with aging where there is often a spontaneous breakdown in temporal organization.”



Members from other institutions include Doug Weber, Tzahi Cohen-Karni, Darcy Griffin, Carl Olson and Matt Smith at Carnegie Mellon; Karrie Fitzpatrick of the University of Minnesota; Omid Veiseh, Jacob Robinson, Isaac Hilton, Kaiyuan Yang and Caleb Kemere of Rice University; Florian Solzbacher of the University of Utah; and Rob Franklin of Blackrock Microsystems.

####

For more information, please click here

Contacts:
Amanda Morris

217.417.4846 (M)

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Princeton-led team discovers unexpected quantum behavior in kagome lattice:Experiments suggest evidence for novel patterns of electronic charge distribution in a kagome material whose handedness can be manipulated with a magnetic field June 18th, 2021

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Princeton-led team discovers unexpected quantum behavior in kagome lattice:Experiments suggest evidence for novel patterns of electronic charge distribution in a kagome material whose handedness can be manipulated with a magnetic field June 18th, 2021

'Nanodecoy' therapy binds and neutralizes SARS-CoV-2 virus June 18th, 2021

Novel liquid crystal metalens offers electric zoom June 17th, 2021

Rice lab peers inside 2D crystal synthesis: Simulations could help molecular engineers enhance creation of semiconducting nanomaterials June 11th, 2021

Possible Futures

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Nanomedicine

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

'Nanodecoy' therapy binds and neutralizes SARS-CoV-2 virus June 18th, 2021

Turning the heat on: A flexible device for localized heat treatment of living tissues June 11th, 2021

Arrowhead Pharmaceuticals to Participate in Upcoming Conferences June 2nd, 2021

Announcements

Proliferation of electric vehicles based on high-performance, low-cost sodium-ion battery:A large-capacity anode material is developed for sodium-ion batteries by using low-cost silicone-based oil. This process, if commercialized, is expected to significantly reduce manufacturing June 18th, 2021

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Military

Novel liquid crystal metalens offers electric zoom June 17th, 2021

Magnetism drives metals to insulators in new experiment: Study provides new tools to probe novel spintronic devices June 4th, 2021

Simple robots, smart algorithms April 30th, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

Nanobiotechnology

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

'Nanodecoy' therapy binds and neutralizes SARS-CoV-2 virus June 18th, 2021

Turning the heat on: A flexible device for localized heat treatment of living tissues June 11th, 2021

Arrowhead Pharmaceuticals to Participate in Upcoming Conferences June 2nd, 2021

Research partnerships

New family of atomic-thin electride materials discovered June 11th, 2021

Magnetism drives metals to insulators in new experiment: Study provides new tools to probe novel spintronic devices June 4th, 2021

Hexagonal boron nitride's remarkable toughness unmasked: 2D material resists cracking and description by century-old theory of fracture mechanics June 2nd, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project