Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Simple robots, smart algorithms

When sensors, communication, memory and computation are removed from a group of simple robots, certain sets of complex tasks can still be accomplished by leveraging the robots' physical characteristics, a trait that a team of researchers led by Georgia Tech calls "task embodiment."

CREDIT
Shengkai Li, Georgia Tech
When sensors, communication, memory and computation are removed from a group of simple robots, certain sets of complex tasks can still be accomplished by leveraging the robots' physical characteristics, a trait that a team of researchers led by Georgia Tech calls "task embodiment." CREDIT Shengkai Li, Georgia Tech

Abstract:
Anyone with children knows that while controlling one child can be hard, controlling many at once can be nearly impossible. Getting swarms of robots to work collectively can be equally challenging, unless researchers carefully choreograph their interactions -- like planes in formation -- using increasingly sophisticated components and algorithms. But what can be reliably accomplished when the robots on hand are simple, inconsistent, and lack sophisticated programming for coordinated behavior?

Simple robots, smart algorithms

Atlanta, GA | Posted on April 30th, 2021

A team of researchers led by Dana Randall, ADVANCE Professor of Computing and Daniel Goldman, Dunn Family Professor of Physics, both at Georgia Institute of Technology, sought to show that even the simplest of robots can still accomplish tasks well beyond the capabilities of one, or even a few, of them. The goal of accomplishing these tasks with what the team dubbed "dumb robots" (essentially mobile granular particles) exceeded their expectations, and the researchers report being able to remove all sensors, communication, memory and computation -- and instead accomplishing a set of tasks through leveraging the robots' physical characteristics, a trait that the team terms "task embodiment."

The team's BOBbots, or "behaving, organizing, buzzing bots" that were named for granular physics pioneer Bob Behringer, are "about as dumb as they get," explains Randall. "Their cylindrical chassis have vibrating brushes underneath and loose magnets on their periphery, causing them to spend more time at locations with more neighbors." The experimental platform was supplemented by precise computer simulations led by Georgia Tech physics student Shengkai Li, as a way to study aspects of the system inconvenient to study in the lab.

Despite the simplicity of the BOBbots, the researchers discovered that, as the robots move and bump into each other, "compact aggregates form that are capable of collectively clearing debris that is too heavy for one alone to move," according to Goldman. "While most people build increasingly complex and expensive robots to guarantee coordination, we wanted to see what complex tasks could be accomplished with very simple robots."

Their work, as reported April 23, 2021 in the journal Science Advances, was inspired by a theoretical model of particles moving around on a chessboard. A theoretical abstraction known as a self-organizing particle system was developed to rigorously study a mathematical model of the BOBbots. Using ideas from probability theory, statistical physics and stochastic algorithms, the researchers were able to prove that the theoretical model undergoes a phase change as the magnetic interactions increase -- abruptly changing from dispersed to aggregating in large, compact clusters, similar to phase changes we see in common everyday systems, like water and ice.

"The rigorous analysis not only showed us how to build the BOBbots, but also revealed an inherent robustness of our algorithm that allowed some of the robots to be faulty or unpredictable," notes Randall, who also serves as a professor of computer science and adjunct professor of mathematics at Georgia Tech.

###

The collaboration is based on experiments and simulations also designed by Bahnisikha Dutta, Ram Avinery and Enes Aydin from Georgia Tech, as well as on theoretical work by Andrea Richa and Joshua Daymude from Arizona State University, and Sarah Cannon from Claremont McKenna College, who is a recent Georgia Tech graduate.

This work is part of a Multidisciplinary University Research Initiative (MURI) funded by the Army Research Office (ARO) to study the foundations of emergent computation and collective intelligence.

Funding: This work was supported by the Department of Defense under MURI award no. W911NF-19-1-0233 and by NSF awards DMS-1803325 (S.C.); CCF-1422603, CCF-1637393, and CCF-1733680 (A.W.R.); CCF-1637031 and CCF-1733812 (D.R. and D.I.G.); and CCF-1526900 (D.R.).

####

About Georgia Institute of Technology
The Georgia Institute of Technology, or Georgia Tech, is a top 10 public research university developing leaders who advance technology and improve the human condition. The Institute offers business, computing, design, engineering, liberal arts, and sciences degrees. Its nearly 40,000 students, representing 50 states and 149 countries, study at the main campus in Atlanta, at campuses in France and China, and through distance and online learning. As a leading technological university, Georgia Tech is an engine of economic development for Georgia, the Southeast, and the nation, conducting more than $1 billion in research annually for government, industry, and society.

For more information, please click here

Contacts:
Tracey A. Reeves

404-660-2929

Jess Hunt-Ralston
Communications - College of Sciences
(404) 385-5207


@GeorgiaTech

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Unconventional superconductor acts the part of a promising quantum computing platform: If it looks like a duck, swims like a duck and quacks like a duck, then it probably is a duck. July 16th, 2021

Unlocking efficient light-energy conversion with stable coordination nanosheets: Scientists design a high-performance, self-powered, UV photodetector using 2D nanosheets that show record photocurrent stability under air exposure July 16th, 2021

The virus trap: Hollow nano-objects made of DNA could trap viruses and render them harmless July 16th, 2021

Robotics

CEA-Leti Introduces Plastic mmWave System for Applications Requiring Ultra-Low Latency and Ultra-High-Speed Connectivity: Low-Cost Gb/s Connectivity Overcomes Limits of Copper Wire and Optical Fiber For Automotive, Aeronautics, Telecom, Industry 4.0 and Healthcare Uses May 28th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

Kirigami-style fabrication may enable new 3D nanostructures April 2nd, 2021

Advancement creates nanosized, foldable robots March 19th, 2021

Govt.-Legislation/Regulation/Funding/Policy

The virus trap: Hollow nano-objects made of DNA could trap viruses and render them harmless July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Stress-free path to stress-free metallic films paves the way for next-gen circuitry: Optimized sputtering technique helps minimize stress in tungsten thin films July 4th, 2021

Possible Futures

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Researchers discover a new inorganic material with lowest thermal conductivity ever reported July 16th, 2021

Discoveries

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

Removing the lead hazard from perovskite solar cells July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Announcements

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Researchers discover a new inorganic material with lowest thermal conductivity ever reported July 16th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

RUDN University chemists obtained an unusual planar nickel complex exhibiting magnetic properties July 16th, 2021

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Military

‘Flashed’ nanodiamonds are just a phase: Rice produces fluorinated nanodiamond, graphene, concentric carbon via flash Joule heating June 23rd, 2021

Novel liquid crystal metalens offers electric zoom June 17th, 2021

Magnetism drives metals to insulators in new experiment: Study provides new tools to probe novel spintronic devices June 4th, 2021

Implantable 'living pharmacy' could control body's sleep/wake cycles: Project receives DARPA contract worth up to $33 million over 4 1/2 years May 13th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project