Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A silver lining for extreme electronics

MSU researchers developed a process to create more resilient circuitry, which they demonstrated by creating a silver Spartan helmet. The circuit was designed by Jane Manfredi, an assistant professor in the College of Veterinary Medicine. Credit: Acta Materialia Inc./Elsevier
MSU researchers developed a process to create more resilient circuitry, which they demonstrated by creating a silver Spartan helmet. The circuit was designed by Jane Manfredi, an assistant professor in the College of Veterinary Medicine. Credit: Acta Materialia Inc./Elsevier

Abstract:
Tomorrow's cutting-edge technology will need electronics that can tolerate extreme conditions. That's why a group of researchers led by Michigan State University's Jason Nicholas is building stronger circuits today.

A silver lining for extreme electronics

East Lansing, MI | Posted on April 30th, 2021

Nicholas and his team have developed more heat resilient silver circuitry with an assist from nickel. The team described the work, which was funded by the U.S. Department of Energy Solid Oxide Fuel Cell Program, on April 15 in the journal Scripta Materialia.

The types of devices that the MSU team is working to benefit -- next-generation fuel cells, high-temperature semiconductors and solid oxide electrolysis cells -- could have applications in the auto, energy and aerospace industries.

Although you can't buy these devices off the shelf now, researchers are currently building them in labs to test in the real world, and even on other planets.

For example, NASA developed a solid oxide electrolysis cell that enabled the Mars 2020 Perseverance Rover to make oxygen from gas in the Martian atmosphere on April 22. NASA hopes this prototype will one day lead to equipment that allows astronauts to create rocket fuel and breathable air while on Mars.

To help such prototypes become commercial products, though, they'll need to maintain their performance at high temperatures over long periods of time, said Nicholas, an associate professor in the College of Engineering.

He was drawn to this field after years of using solid oxide fuel cells, which work like solid oxide electrolysis cells in reverse. Rather than using energy to create gases or fuel, they create energy from those chemicals.

"Solid oxide fuel cells work with gases at high temperature. We're able to electrochemically react those gases to get electricity out and that process is a lot more efficient than exploding fuel like an internal combustion engine does," said Nicholas, who leads a lab in the Chemical Engineering and Materials Science Department.

But even without explosions, the fuel cell needs to withstand intense working conditions.

"These devices commonly operate around 700 to 800 degrees Celsius, and they have to do it for a long time -- 40,000 hours over their lifetime," Nicholas said. For comparison, that's approximately 1,300 to 1,400 degrees Fahrenheit, or about double the temperature of a commercial pizza oven.

"And over that lifetime, you're thermally cycling it," Nicholas said. "You're cooling it down and heating it back up. It's a very extreme environment. You can have circuit leads pop off."

Thus, one of the hurdles facing this advanced technology is rather rudimentary: The conductive circuitry, often made from silver, needs to stick better to the underlying ceramic components.

The secret to improving the adhesion, the researchers found, was to add an intermediate layer of porous nickel between the silver and the ceramic.

By performing experiments and computer simulations of how the materials interact, the team optimized how it deposited the nickel on the ceramic. And to create the thin, porous nickel layers on the ceramic in a pattern or design of their choosing, the researchers turned to screen printing.

"It's the same screen printing that's used to make T-shirts," Nicholas said. "We're just screen-printing electronics instead of shirts. It's a very manufacturing-friendly technique."

Once the nickel is in place, the team puts it in contact with silver that's melted at a temperature of about 1,000 degrees Celsius. The nickel not only withstands that heat -- its melting point is 1,455 degrees Celsius -- but it also distributes the liquified silver uniformly over its fine features using what's called capillary action.

"It's almost like a tree," Nicholas said. "A tree gets water up to its branches via capillary action. The nickel is wicking up the molten silver via the same mechanism."

Once the silver cools and solidifies, the nickel keeps it locked onto the ceramic, even in the 700 to 800 degree Celsius heat it would face inside a solid oxide fuel cell or a solid oxide electrolysis cell. And this approach also has the potential to help other technologies, where electronics can run hot.

"There are a wide variety of electronic applications that require circuit boards that can withstand high temperatures or high power," said Jon Debling, a technology manager with MSU Technologies, Michigan State's tech transfer and commercialization office. "These include existing applications in automotive, aerospace, industrial and military markets, but also newer ones such as solar cells and solid oxide fuel cells."

As a technology manager, Debling works to commercialize Spartan innovations and he's working to help patent this process for creating tougher electronics.

"This technology is a significant improvement -- in cost and temperature stability -- over existing paste and vapor deposition technologies," he said.

For his part, Nicholas remains most interested in those cutting-edge applications on the horizon, things like solid oxide fuel cells and solid oxide electrolysis cells.

"We're working to improve their reliability here on Earth -- and on Mars," Nicholas said.

###

Also contributing to the project were Spartan engineering researchers Assistant Professor Hui-Chia Yu, Professor Timothy Hogan and Professor Thomas Bieler. Graduate student researchers on the project included Genzhi Hu, Quan Zhou, Aiswarya Bhatlawande, Jiyun Park, Robert Termuhlen and Yuxi Ma (Zhou, Bhatlawande and Ma have since graduated).

One of the project's coleaders at Brown University, Professor Yue Qi, also has ties to MSU. She served as faculty and the inaugural associate dean of inclusion and diversity in the College of Engineering through 2020.

####

For more information, please click here

Contacts:
Caroline Brooks


@MSUnews

Copyright © Michigan State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Possible Futures

Emergence of a new heteronanostructure library May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

Chip Technology

Tiny, Wireless, Injectable Chips Use Ultrasound to Monitor Body Processes May 12th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021

With new optical device, engineers can fine tune the color of light April 23rd, 2021

Announcements

Emergence of a new heteronanostructure library May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Energy

Emergence of a new heteronanostructure library May 14th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

Wearable sensors that detect gas leaks April 19th, 2021

Better solutions for making hydrogen may lie just at the surface April 9th, 2021

Automotive/Transportation

Chile coating and composite industry makes leap forward leveraging graphene nanotube solutions April 9th, 2021

Izon Science launches the Exoid to transform nanoparticle measurement: The semi-automated Exoid device uses new-generation Tunable Resistive Pulse Sensing (TRPS) technology, enabling the measurement of complex nano-particle size, concentration, and charge with unparalleled prec March 23rd, 2021

A new industry standard for batteries: ultra-clean facility for graphene nanotube dispersions March 19th, 2021

GLOBALFOUNDRIES 22FDX RF Solution Provides the Basis for Next-Gen mmWave Automotive Radar: Next-generation auto radar technology, based on GFs 22FDX RF solution, will help make vehicles smarter and roads even safer than today March 10th, 2021

Aerospace/Space

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Expanding the freedom of design: powder coating on FRP thanks to conductive gelcoats with graphene nanotubes March 3rd, 2021

Fuel Cells

Scientists suggested a method to improve performance of methanol fuel cells December 25th, 2020

New imaging method views soil carbon at near-atomic scales December 25th, 2020

Safe space: improving the "clean" methanol fuel cells using a protective carbon shell: Scientists encapsulate catalyst in a protective molecular sieve that selectively prevents undesired reactions in methanol fuel cells December 4th, 2020

High-performance single-atom catalysts for high-temperature fuel cells: Individual Pt atoms participate in catalytic reaction to faciitate the electrode process by up to 10 times. Single-atom Pt catalysts are stable at 700 degrees Celsius and expected to stimulate the commerciali September 25th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project