Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers realize high-efficiency frequency conversion on integrated photonic chip

Abstract:
A team led by Prof. GUO Guangcan and Prof. ZOU Changling from the University of Science and Technology of China of the Chinese Academy of Sciences realized efficient frequency conversion in microresonators via a degenerate sum-frequency process, and achieved cross-band frequency conversion and amplification of converted signal through observing the cascaded nonlinear optical effects inside the microresonator. The study was published in Physics Review Letters.

Researchers realize high-efficiency frequency conversion on integrated photonic chip

Hefei, China | Posted on April 23rd, 2021

Coherent frequency conversion process has wide application in classical and quantum information fields such as communication, detection, sensing, and imaging. As a bridge connecting wavebands between fiber telecommunications and atomic transition, coherent frequency conversion is a necessary interface for distributed quantum computing and quantum networks.

Integrated nonlinear photonic chip stands out because of its significant technological advances of improving nonlinear optical effects by microresonator's enhancing the light-matter interaction, along with other advantages like small size, great scalability, and low energy consumption. These make integrated nonlinear photonic chips an important platform to covert optical frequency efficiently and realize other nonlinear optical effects.

However, the on-chip resonant-enhanced coherent frequency conversion requires multiple (three or more) modes of phase matching condition among distinct wavelengths, which imposes significant challenges to the devices' design, fabrication, and modulation. Especially in the application of atomic and molecular spectroscopy, the intrinsic error brought by nanofabrication technique of integrated nonlinear photonic chips makes the resonant frequency of microresonator hard to match atomic transition frequency.

The researchers in this study proposed a new scheme for high-efficiency coherent frequency conversion requiring only the two-mode phase matching condition via a degenerate sum-frequency process. They achieved precise tuning of the frequency window (FW): coarse tuning by adjusting the device temperature with a tuning range of 100 GHz; fine tuning with MHz level based on previous work of all-optical thermal control in an integrated microcavity.

The results showed that the best achieved efficiency was up to 42% during the photon-number conversion from 1560-nm-wide to 780-nm-wide wavelength, indicating a frequency tuning bandwidth over 250GHz. This satisfied the interconnection of telecom photons and rubidium (Rb) atoms.

Besides, the researchers experimentally verified cascaded χ(2) and Kerr nonlinear optical effects inside a single microresonator to amplify the converted signal, which was neglected before. Thus the highest conversion efficiency was potential to achieve over 100% through adjusting device fabrication parameters, fulfilling simultaneously signal converted and amplified.

This study provides a novel way for efficient on-chip frequency conversion, which is extremely important for on-chip quantum information processing.

####

For more information, please click here

Contacts:
Jane FAN Qiong

86-551-636-07280

Copyright © University of Science and Technology of China (USTC)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Imaging

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

Quantum Physics

Quantum steering for more precise measurements April 23rd, 2021

Experiments cast doubts on the existence of quantum spin liquids April 21st, 2021

Shedding light on perovskite films: Efficient materials for future solar cells - New model to determine photoluminescence quantum efficiency March 16th, 2021

Quantum quirk yields giant magnetic effect, where none should exist: Study opens window into the landscape of extreme topological matter March 1st, 2021

Possible Futures

Emergence of a new heteronanostructure library May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

Chip Technology

Tiny, Wireless, Injectable Chips Use Ultrasound to Monitor Body Processes May 12th, 2021

A silver lining for extreme electronics April 30th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021

Quantum Computing

New nanoscale device for spin technology: Spin waves could unlock the next generation of computer technology, a new component allows physicists to control them April 16th, 2021

Qubits comprised of holes could be the trick to build faster, larger quantum computers: Electron holes could be the solution to operational speed/coherence trade-off April 2nd, 2021

Scientists stabilize atomically thin boron for practical use March 12th, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

Sensors

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Wearable sensors that detect gas leaks April 19th, 2021

Discovery could help lengthen lifespan of electronic devices: The research could lead to electronics being designed with better endurance April 9th, 2021

Discoveries

Emergence of a new heteronanostructure library May 14th, 2021

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

Announcements

Emergence of a new heteronanostructure library May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Tools

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

World's first fiber-optic ultrasonic imaging probe for future nanoscale disease diagnostics April 30th, 2021

New Cypher VRS1250 Video-Rate Atomic Force Microscope Enables True Video-Rate Imaging at up to 45 Frames per Second April 30th, 2021

An easy-to-use platform is a gateway to AI in microscopy April 23rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project