Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Better metric for thermoelectric materials means better design strategies: New quantity helps experimentally classify dimensionality of thermoelectric materials

(a)-(c) show how the Seebeck coefficient varies for 1D, 2D and 3D materials, while (d)-(f) show the thermoelectric conductivity for the same systems. No major changes in the shape of the curves are seen for (a)-(c); drastic changes are seen for (d)-(e) beyond a threshold range marked in yellow, making thermoelectric conductivity a much more sensitive, unambiguous measure for dimensionality.

CREDIT
Tokyo Metropolitan University
(a)-(c) show how the Seebeck coefficient varies for 1D, 2D and 3D materials, while (d)-(f) show the thermoelectric conductivity for the same systems. No major changes in the shape of the curves are seen for (a)-(c); drastic changes are seen for (d)-(e) beyond a threshold range marked in yellow, making thermoelectric conductivity a much more sensitive, unambiguous measure for dimensionality. CREDIT Tokyo Metropolitan University

Abstract:
Researchers from Tokyo Metropolitan University have shown that a quantity known as "thermoelectric conductivity" is an effective measure for the dimensionality of newly developed thermoelectric nanomaterials. Studying films of semiconducting single-walled carbon nanotubes and atomically thin sheets of molybdenum sulfide and graphene, they found clear distinctions in how this number varies with conductivity, in agreement with theoretical predictions in 1D and 2D materials. Such a metric promises better design strategies for thermoelectric materials.

Better metric for thermoelectric materials means better design strategies: New quantity helps experimentally classify dimensionality of thermoelectric materials

Tokyo, Japan | Posted on April 15th, 2021

Thermoelectric devices take differences in temperature between different materials and generate electrical energy. The simplest example is two strips of different metals welded together at both ends to form a loop; heating one of the junctions while keeping the other cool creates an electrical current. This is called the Seebeck effect. Its potential applications promise effective usage of the tremendous amount of power that is wasted as dissipated heat in everyday life, whether it be in power transmission, industrial exhaust, or even body heat. In 1993, it was theorized that atomically thin, one-dimensional materials would have the ideal mix of properties required to create efficient thermoelectric devices. The resulting search led to nanomaterials such as semiconducting single-walled carbon nanotubes (SWCNTs) being applied.

However, there was an ongoing issue that prevented new designs and systems from being accurately characterized. The key properties of thermoelectric devices are thermal conductivity, electrical conductivity, and the Seebeck coefficient, a measure of how much voltage is created at the interface between different materials for a given temperature difference. As material science advanced into the age of nanotechnology, these numbers weren't enough to express a key property of the new nanomaterials that were being created: the "dimensionality" of the material, or how 1D, 2D or 3D-like the material behaves. Without a reliable, unambiguous metric, it becomes difficult to discuss, let alone optimize new materials, particularly how the dimensionality of their structure leads to enhanced thermoelectric performance.

To tackle this dilemma, a team led by Professor Kazuhiro Yanagi of Tokyo Metropolitan University set out to explore a new parameter recently flagged by theoretical studies, the "thermoelectric conductivity." Unlike the Seebeck coefficient, the team's theoretical calculations confirmed that this value varied differently with increased conductivity for 1D, 2D and 3D systems. They also confirmed this experimentally, preparing thin films of single-walled carbon nanotubes as well as atomically thin sheets of molybdenum sulfide and graphene, archetypal materials in 1D and 2D respectively. Measurements conclusively showed that the thermoelectric conductivity of the 1D material decreased at higher values of conductivity, while the curve for 2D materials plateaued. They also note that this demonstrates how the dimensionality of the material is retained even when the material is prepared in macroscopic films, a great boost for efforts to leverage the specific dimensionality of certain structures to improve thermoelectric performance.

Combined with theoretical calculations, the team conclude that high thermoelectric conductivity, high conventional electrical conductivity, and low thermal conductivity are key goals for the engineering of new devices. They hope these measurable, tangible targets will bring much needed clarity and unity to the development of state-of-the-art thermoelectric devices.

###

This work was supported by JSPS KAKENHI Grants-in-Aid for Scientific Research (17H06124, 17H01069, 18H01816, 19J21142, 20H02573, 20K15117, 26102012, 25000003, 19K22127, 19K15383, 20H05189) and the JST CREST Program (MJCR17I5).

####

For more information, please click here

Contacts:
Go Totsukawa

81-426-772-728

@TMU_PR

Copyright © Tokyo Metropolitan University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

2 Dimensional Materials

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Graphene/ Graphite

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project