Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A general approach to high-efficiency perovskite solar cells

Researchers from the Institute for Applied Physics (IAP) and the Center for Advancing Electronics Dresden (cfaed) at TU Dresden developed a general methodology for the reproducible fabrication of high efficiency perovskite solar cells. Their study has been published in the renowned journal Nature Communications.

CREDIT
Christiane Kunath
Researchers from the Institute for Applied Physics (IAP) and the Center for Advancing Electronics Dresden (cfaed) at TU Dresden developed a general methodology for the reproducible fabrication of high efficiency perovskite solar cells. Their study has been published in the renowned journal Nature Communications. CREDIT Christiane Kunath

Abstract:
Perovskites, a class of materials first reported in the early 19th century, were "re-discovered" in 2009 as a possible candidate for power generation via their use in solar cells. Since then, they have taken the photovoltaic (PV) research community by storm, reaching new record efficiencies at an unprecedented pace. This improvement has been so rapid that by 2021, barely more than a decade of research later, they are already achieving performance similar to conventional silicon devices. What makes perovskites especially promising is the manner in which they can be created. Where silicon-based devices are heavy and require high temperatures for fabrication, perovskite devices can be lightweight and formed with minimal energy investiture. It is this combination - high performance and facile fabrication - which has excited the research community.

A general approach to high-efficiency perovskite solar cells

Dresden, Germany | Posted on April 1st, 2021

As the performance of perovskite photovoltaics rocketed upward, left behind were some of the supporting developments needed to make a commercially viable technology. One issue that continues to plague perovskite development is device reproducibility. While some PV devices can be made with the desired level of performance, others made in the exact same manner often have significantly lower efficiencies, puzzling and frustrating the research community.

Recently, researchers from the Emerging Electronic Technologies Group of Prof. Yana Vaynzof have identified that fundamental processes that occur during the perovskite film formation strongly influence the reproducibility of the photovoltaic devices. When depositing the perovskite layer from solution, an antisolvent is dripped onto the perovskite solution to trigger its crystallization. "We found that the duration for which the perovskite was exposed to the antisolvent had a dramatic impact on the final device performance, a variable which had, until now, gone unnoticed in the field." says Dr. Alexander Taylor, a postdoctoral research associate in the Vaynzof group and the first author on the study. "This is related to the fact that certain antisolvents may at least partly dissolve the precursors of the perovskite layer, thus altering its final composition. Additionally, the miscibility of antisolvents with the perovskite solution solvents influences their efficacy in triggering crystallization."

These results reveal that, as researchers fabricate their PV devices, differences in this antisolvent step could cause the observed irreproducibility in performance. Going further, the authors tested a wide range of potential antisolvents, and showed that by controlling for these phenomena, they could obtain cutting-edge performance from nearly every candidate tested. "By identifying the key antisolvent characteristics that influence the quality of the perovskite active layers, we are also able to predict the optimal processing for new antisolvents, thus eliminating the need for the tedious trial-and-error optimization so common in the field." adds Dr. Fabian Paulus, leader of the Transport in Hybrid Materials Group at cfaed and a contributor to the study.

"Another important aspect of our study is the fact that we demonstrate how an optimal application of an antisolvent can significantly widen the processibility window of perovskite photovoltaic devices" notes Prof. Vaynzof, who led the work. "Our results offer the perovskite research community valuable insights necessary for the advancement of this promising technology into a commercial product."

####

For more information, please click here

Contacts:
Yana Vaynzof

49-351-463-42132

@tudresden_de

Copyright © TU Dresden

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The results were published in the prestigious journal Nature Communications.

Related News Press

News and information

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Perovskites

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

2D materials for conducting hole currents from grain boundaries in perovskite solar cells April 2nd, 2021

Possible Futures

Emergence of a new heteronanostructure library May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

Discoveries

Emergence of a new heteronanostructure library May 14th, 2021

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

Announcements

Emergence of a new heteronanostructure library May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Energy

Emergence of a new heteronanostructure library May 14th, 2021

A silver lining for extreme electronics April 30th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

Wearable sensors that detect gas leaks April 19th, 2021

Solar/Photovoltaic

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

2D materials for conducting hole currents from grain boundaries in perovskite solar cells April 2nd, 2021

A PTV-based polymer enabled organic solar cells with over 16% efficiency April 2nd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project