Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Shedding light on perovskite films: Efficient materials for future solar cells - New model to determine photoluminescence quantum efficiency

In terms of efficiency, perovskite solar cells have caught up on silicon solar cells, but some of their properties are not yet understood completely.

CREDIT
Markus Breig, KIT
In terms of efficiency, perovskite solar cells have caught up on silicon solar cells, but some of their properties are not yet understood completely. CREDIT Markus Breig, KIT

Abstract:
Photovoltaics decisively contributes to sustainable energy supply. The efficiency of solar cells in directly converting light energy into electrical energy depends on the material used. Metal-halide perovskites are considered very promising materials for solar cells of the next generation. With these semiconductors named after their special crystal structure, a considerable increase in efficiency was achieved in the past years. Meanwhile, perovskite solar cells have reached an efficiency of up to 25.5 percent, which is quite close to that of silicon solar cells that are presently dominating the market. Moreover, the materials needed for perovskite solar cells are rather abundant. The solar cells can be produced easily and at low cost and they can be used for various applications. The theoretically achievable efficiency of perovskite solar cells is about 30.5 percent.

Shedding light on perovskite films: Efficient materials for future solar cells - New model to determine photoluminescence quantum efficiency

Karlsruhe, Germany | Posted on March 16th, 2021

To approach this value, optoelectronic quality of perovskite semiconductors must be further increased. In principle, materials suited for photovoltaics are expected to not only absorb light, but to also emit it efficiently. This process is known as photoluminescence. The corresponding parameter, photoluminescence quantum efficiency, is perfectly suited to determine the quality of perovskite semiconductors. Together with scientists from the Center for Advanced Materials (CAM) of Heidelberg University and the Technical University of Dresden, researchers of KIT's Institute of Microstructure Technology (IMT) and Light Technology Institute (LTI) have now developed a model, by means of which photoluminescence quantum efficiency of perovskite films can be determined reliably and exactly for the first time. Their results are reported in Matter.

Materials Have More Optimization Potentials than Assumed

"With the help of our model, photoluminescence quantum efficiency under solar irradiation can be determined far more precisely," says Dr. Paul Fassl from IMT. "Photon recycling is of high importance. This is the share of photons emitted by the perovskite, which is re-absorbed and re-emitted in the thin films." The researchers applied their model to methylammonium lead triiodide (CH3NH3PbI3), one of the perovskites of highest photoluminescence quantum efficiency. So far, it has been estimated to amount to about 90 percent. Model calculations, however, revealed that it is about 78 percent. The scientists explain that previous estimations did not adequately consider the effect of light scattering and, hence, underestimated the probability of photons - the quantums of light energy - leaving the film before they are re-absorbed. "Our results show that the potential for optimization of these materials is far higher than assumed," says Dr. Ulrich W. Paetzold, Head of the Advanced Optics and Materials for Next Generation Photovoltaics Group of IMT. The team offers an open-source application based on the model, by means of which photoluminescence quantum efficiencies of various perovskite materials can be calculated.

####

About Karlsruhe Institute of Technology
Being "The Research University in the Helmholtz-Association," KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility and information. For this, about 9,600 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 23,300 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life. KIT is one of the German universities of excellence.

For more information, please click here

Contacts:
Monika Landgraf

49-721-608-41150

Contact for This Press Release

Sandra Wiebe
Press Officer
Phone: +49 721 608-41172


@KITKarlsruhe

Copyright © Karlsruhe Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original Publication

Related News Press

News and information

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Perovskites

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

2D materials for conducting hole currents from grain boundaries in perovskite solar cells April 2nd, 2021

Quantum Physics

Researchers realize high-efficiency frequency conversion on integrated photonic chip April 23rd, 2021

Quantum steering for more precise measurements April 23rd, 2021

Experiments cast doubts on the existence of quantum spin liquids April 21st, 2021

Possible Futures

Emergence of a new heteronanostructure library May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

Discoveries

Emergence of a new heteronanostructure library May 14th, 2021

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

Announcements

Emergence of a new heteronanostructure library May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Hanging by a thread: Imaging and probing chains of single atoms: Scientists develop a method to visualize monoatomic chains and measure the strength and conductance of single-atom bonds May 14th, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

New technology enables rapid sequencing of entire genomes of plant pathogens May 14th, 2021

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Energy

Emergence of a new heteronanostructure library May 14th, 2021

A silver lining for extreme electronics April 30th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

Wearable sensors that detect gas leaks April 19th, 2021

Solar/Photovoltaic

Harvesting light like nature does:Synthesizing a new class of bio-inspired, light-capturing nanomaterials May 14th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

2D materials for conducting hole currents from grain boundaries in perovskite solar cells April 2nd, 2021

A PTV-based polymer enabled organic solar cells with over 16% efficiency April 2nd, 2021

Quantum nanoscience

Quantum steering for more precise measurements April 23rd, 2021

Scientists build the smallest cable containing a spin switch March 12th, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Physicists propose a new theory to explain one dimensional quantum liquids formation January 15th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project