Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists build the smallest cable containing a spin switch

Abstract:
*IMDEA Nanociencia researchers report the first encapsulation of
spin-crossover (SCO) molecules inside carbon nanotubes.*

·*SCO molecules present a radical spin change with temperature, relevant
for magnetic switches and spintronics devices. *

·*This is a fundamental research result that helps to understand the
behaviour of magnetic molecules confined in very small spaces.*

Scientists build the smallest cable containing a spin switch

Madrid and Sevilla, Spain | Posted on March 12th, 2021

A research work published in /Nature Communications/, involving
researchers from the Madrid Institute for Advanced Studies in
Nanoscience (IMDEA) and the University of Sevilla, has measured for the
first time the electrical conductivity of a single carbon nanotube with
spin-crosslinked molecules inside it.

As electronic devices continue to shrink to meet the demands of the
market, scientists are working to develop the minute components that
make them work. There is a persistent demand for fast and efficient
processes, and spin-logic (Spintronics) devices could be the solution to
shape the future of computing. Here, magnetic molecules could add a new
twist to conventional electronics. In particular, spin-crossover (SCO)
molecules conform a family of zero-dimensional (0D) functional units
that display a radical spin switch triggered by an electro-structural
change activatable by external stimulus such as light, pressure or
temperature. The spin switch confers SCO molecules excellent
capabilities and functionalities for implementation in nano-electronics.
However, their insulating character prevent these molecules to be fully
exploited so far. Several groups have embedded SCO molecules into
matrices of conductive material but the results are not fully compatible
with the requirements of nanoscale devices.

A ground-breaking system for effectively incorporating SCO molecules to
conductive materials is to introduce them inside conductive carbon
nanotubes. Carbon nanotubes are one-dimensional (1D) materials, strong,
lightweight and, most importantly, highly electrically conducting
miniature wires, typically 1-5 nanometres in diameter, but up to
centimetres in length. For the first time, a group of researchers at
IMDEA Nanociencia have encapsulated Fe-based SCO molecules inside carbon
nanotubes. The single-walled carbon nanotubes act as conducting
backbones that carry, protect and sense the SCO spin state of the
molecules, and overcomes their insulating drawbacks.

Iron-based SCO molecules encapsulated in a single carbon nanotube.
Credit: Nature Communications 2021.

The researchers, led by Prof. Emilio M. Pérez, Dr. José Sanchez Costa
and Dr. Enrique Burzurí, studied the electron transport through
individual carbon nanotubes embedded in nanoscale transistors by
dielectrophoresis. They found a change in the nanotube’s electrical
conductance that is modified by the spin state of the encapsulated SCO
molecules. The transition between the two conducting states is triggered
by a thermal switch that turns out to be not symmetric: the transition
temperature point is not the same going down than up the thermometer.
This fact opens a hysteresis not present in crystalline samples, and
many interesting potential applications for the hybrid system arise:
“These systems are like mini-memory elements at the nanoscale, as they
present a hysteresis cycle with temperature variation. They could also
serve as a filter of spin (a demand for spintronic devices) because the
nanotube “feels” if the molecule has spin or not” Dr. Burzurí comments.

The experimental results are supported by theory calculations by
researchers at Universidad de Sevilla. During the switching, the
orbitals of the SCO molecules change and hence their hybridization with
the carbon nanotube, that in turn modifies the electrical conductivity
of the latter. The SCO molecules in their low spin state have a stronger
interaction with the nanotubes; it is more difficult for them to change
their spin state and this is translated to a “jump” in the nanotube
conductivity at a certain temperature, depending on the initial spin state.

This first encapsulation of SCO molecules inside single-walled carbon
nanotubes is a fundamental research result that helps to understand the
behaviour of these molecules when confined in very small spaces, and
provides a backbone for their readout and positioning into nanodevices.
The authors hope that such mix-dimensional (0D-1D) hybrid can leverage
the best properties of their constituent materials, exploiting the spin
state as another degree of freedom. This miniscule wire and switch can
be produced on a preparative scale and may represent a relevant step in
the development of nanoscale magnetic systems.

This research outcome is the result of a collaboration amongst
researchers at IMDEA Nanociencia and Departamento de Química Física at
Universidad de Sevilla. Prof. Emilio M. Pérez is the leader of the Group
of Chemistry of Low Dimensional Materials; Dr. José Sánchez Costa is the
leader of the Group of Switchable Nanomaterials; Dr. Enrique Burzurí is
the leader of the group Functional Nanoscale Materials and Devices; all
three groups at IMDEA Nanociencia. The three main authors acknowledge
the funding from the Spanish Ministry of Science and Innovation and the
Severo Ochoa Excellence in R&D award to IMDEA Nanociencia (2017-2021).

####

For more information, please click here

Contacts:
IMDEA Nanociencia
C/Faraday 9
28049 Madrid, Spain
Tel.: +34 91 299 87 00
www.nanociencia.imdea.org
Twitter: @IMDEA_Nano
Facebook: @IMDEANanociencia
Instagram: @IMDEANanociencia

Copyright © IMDEA Nanociencia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Linearly assembled Ag-Cu nanoclusters: Spin transfer and distance-dependent spin coupling November 4th, 2022

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Quantum nanoscience

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Bridging light and electrons January 12th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project