Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Dynamics of nanoparticles using a new isolated lymphatic vessel lumen perfusion system

Schematic diagram of an intralymphatic evaluation system for nanoparticles This article was published in Nano Today, 36, Kuroda C, et al., Isolated lymphatic vessel lumen perfusion system for assessing nanomaterial movements and nanomaterial-induced responses in lymphatic vessels, online, Copyright Elsevier (2021).

CREDIT
Copyright © 2021 Elsevier B.V.
Schematic diagram of an intralymphatic evaluation system for nanoparticles This article was published in Nano Today, 36, Kuroda C, et al., Isolated lymphatic vessel lumen perfusion system for assessing nanomaterial movements and nanomaterial-induced responses in lymphatic vessels, online, Copyright Elsevier (2021). CREDIT Copyright © 2021 Elsevier B.V.

Abstract:
Nanoparticles used in drug delivery systems, bioimaging, and regenerative medicine migrate from tissues to lymphatic vessels after entering the body, so it is necessary to clarify the interaction between nanoparticles and lymphatic vessels. Although technology to observe the flow of nanoparticles through lymphatic vessels in vivo has been developed, there has been no method to evaluate the flow of nanoparticles in a more detailed and quantitative manner ex vivo. Thus, research was conducted to develop an ex vivo lymphatic vessel lumen perfusion system to determine how nanoparticles move in lymphatic vessels and how they affect the physiological movement of lymphatic vessels.

Dynamics of nanoparticles using a new isolated lymphatic vessel lumen perfusion system

Matsumoto, Japan | Posted on February 19th, 2021

Nanoparticles introduced into the body enter the lymphatic vessels, which spontaneously contract and dilate to transport lymph fluid throughout the organism. A research group led by Professor Naoto Saito, Director of the Institute for Biomedical Sciences, and Chika Kuroda, a third-year student at Yamaguchi University Faculty of Medicine and Health Sciences and graduate of the Master's Program at Shinshu University Graduate School of Medicine, have developed a new isolated lymphatic vessel lumen perfusion system that can move carbon nanotubes and other nanoparticles into surgically removed lymphatic vessels to visually evaluate their properties. The group succeeded in developing a novel experimental system to evaluate how nanoparticles move in lymphatic vessels and how they affect the physiological movement of lymphatic vessels. The experimental system developed in this study has made it possible to visually and quantitatively elucidate the interaction between nanoparticles and lymphatic vessels and to evaluate the biological safety of nanoparticles.

This is the first time that an ex vivo perfusion system has been created to assess the effects and kinetics of nanoparticles in lymphatic vessels during spontaneous vessel contraction and expansion. Compared with in vivo examinations, the perfusion system permits higher-resolution and more detailed observation of nanomaterial movements along with associated lymphatic vessel reactions. Furthermore, the new system enables both quantitative and histological assessments of a single lymphatic vessel's physiological reaction to nanomaterials. By using this experimental system to evaluate specific nanoparticles, the physiological and histological effects of the nanoparticles on the lymphatic vessels can be clarified, and the clinical application of nanoparticles can be achieved more safely by evaluating their biological safety in combination with cell and animal experiments.

Nanoparticles are considered to be useful options for drug delivery and cancer imaging. After entering the body, they are known to enter lymphatic vessels and accumulate in lymph nodes, although the precise interactions between nanoparticles and lymphatic vessels remain unclear. The new perfusion system enables detailed examinations, safety, and the elucidation of pharmacokinetics for future clinical nanoparticle applications. In the future, the group plans to examine the effects of various nanoparticles on lymphatic vessels depending on their concentration and time with the aim of applying nanoparticles to medicine. In addition, the research group plans to verify the safety of nanoparticles for clinical applications by combining them with cell and animal experiments. Ultimately, they would like to use this system to clinically apply particles whose safety has been confirmed in a wide range of fields such as DDS and imaging, and to elucidate the effects of nanoparticles on the lymphatic system.

####

For more information, please click here

Contacts:
Hitomi Thompson

81-263-373-529

@ShinshuUni

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For complete details, please refer to the published article in Nano Today:

Related News Press

News and information

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

New Cypher VRS1250 Video-Rate Atomic Force Microscope Enables True Video-Rate Imaging at up to 45 Frames per Second April 30th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Simple robots, smart algorithms April 30th, 2021

A silver lining for extreme electronics April 30th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

Possible Futures

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

New Cypher VRS1250 Video-Rate Atomic Force Microscope Enables True Video-Rate Imaging at up to 45 Frames per Second April 30th, 2021

Nanomedicine

World's first fiber-optic ultrasonic imaging probe for future nanoscale disease diagnostics April 30th, 2021

Arrowhead Announces Improvement in Fibrosis after ARO-AAT Treatment in Patients with Alpha-1 Liver Disease April 28th, 2021

Silver ions hurry up, then wait as they disperse: Rice chemists show ions’ staged release from gold-silver nanoparticles could be useful property April 23rd, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

Discoveries

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Less innocent than it looks: Hydrogen in hybrid perovskites: Researchers identify the defect that limits solar-cell performance April 30th, 2021

Announcements

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

New Cypher VRS1250 Video-Rate Atomic Force Microscope Enables True Video-Rate Imaging at up to 45 Frames per Second April 30th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Researchers analyzed circulating currents inside gold nanoparticles: A new method facilitates accurate analysis of magnetic field effects inside complex nanostructures April 30th, 2021

Nanobiotechnology

Arrowhead Announces Improvement in Fibrosis after ARO-AAT Treatment in Patients with Alpha-1 Liver Disease April 28th, 2021

Synthetic gelatin-like material mimics lobster underbelly’s stretch and strength: The membrane’s structure could provide a blueprint for robust artificial tissues April 23rd, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 Second Quarter Results April 16th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project