Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CEA-Leti Announces EU Project to Create Dynamically Programmable Wireless 6G Environments: RISE-6G Collaboration Will Develop Technology for Reconfigurable Intelligent Surfaces and Ensure Energy Efficiency, Localization Accuracy and Privacy

Abstract:
CEA-Leti today announced a visionary EU 6G research project for next-generation wireless connectivity. Called RISE-6G, it will design, prototype and test smart and energy-sustainable technological advances based on reconfigurable intelligent surfaces (RIS) that will enable programmable control and shaping of the wireless propagation environment.

CEA-Leti Announces EU Project to Create Dynamically Programmable Wireless 6G Environments: RISE-6G Collaboration Will Develop Technology for Reconfigurable Intelligent Surfaces and Ensure Energy Efficiency, Localization Accuracy and Privacy

Grenoble, France | Posted on February 10th, 2021

These surfaces may be diode-based antennas or metamaterials for coating objects in the environment, such as walls, ceilings, mirrors and appliances, and they will operate as reconfigurable reflectors or transceivers for massive access when equipped with active radio-frequency (RF) elements.



“Our mission is to enable this disruptive new concept as a service for the wireless environment by dynamically controlling wireless communication for local, brief and energy-efficient, high-capacity communications,” said Emilio Calvanese Strinati, RISE-6G project coordinator and 6G future wireless research director at CEA-Leti. “The system also will ensure energy efficiency, localization accuracy and privacy guarantees against eavesdroppers, while accommodating specific regulations on spectrum use and restrained electromagnetic field (EMF) emissions.”



Integrating Hardware Building Blocks in Future B5G/6G Networks



As part of its goal to demonstrate a scalable, smart, wireless connectivity paradigm enabled by RIS, the pan-European project will address the design of key hardware building blocks and their integration in future B5G/6G networks.



To achieve its goals, the RISE-6G objectives are to:

§ define novel network architectures and operation strategies incorporating multiple reconfigurable intelligent surfaces,

§ characterize the new system’s fundamental limits capitalizing on the proposed realistic and validated radio-wave propagation models,

§ design solutions to enable online trade between high-capacity connectivity, energy efficiency, EMF exposure and localization accuracy based on dynamically programmable wireless propagation environments, while accommodating specific legislation and regulation requirements on spectrum use, data protection, and electromagnetic field (EMF) emission, and,

§ prototype-benchmark proposed innovation via two complementary trials with verticals (Fiat Industry 4.0 production site and SNCF train station).

Expected to be deployed by the end of this decade, B5G/6G networks will create the basis for human-centered smart societies and vertical industries. To accomplish this, advances will be expected to support the long-term, sustainable transformation of networks into a distributed smart-connectivity infrastructure, where new terminal types, e.g. mirrors, signs and walls, are embedded in the environment. In addition to responding to regulations and specific user-, service- and location-based needs, targeted innovations include an end-to-end, connectivity-computation system with high flexibility and dynamism that accommodates continuously evolving and heterogeneous applications.



‘Remarkable Societal Impact in the Near Future’

By dynamically controlling RIS-enabled communication environments, mobile network users will gather in optimized “ultra-capacity/gigabit areas” with controlled energy consumption and circumscribed EMF to avoid interference from unconnected devices and to minimize their impact on the people around them.



“RISE-6G will lend itself to a revolutionary flow of the current network paradigm by contributing with novel technologies and strategic business plans that will have a remarkable societal impact in the near future,” Calvanese Strinati said.



The project is poised to actively participate in standardization bodies and bring its technically advanced vision into the planned industrial implementation. This will secure European technology leadership, supporting the creation of new European-conceived service and business opportunities in the B5G/6G global race.

Project Team

Officially launched on Jan. 1, 2021, with a planned duration of three years, the RISE-6G project will be piloted by CEA-Leti. The consortium includes 13 partners from seven countries representing the academic, research and industrial sectors:

Industry: NEC Laboratories Europe GMBH (technical coordinator, network vendor), Orange and Telecom Italia (telecom operators); Greenerwave (technology provider)

Academia: Chalmeers University, Aalborg University, National and Kapodistrian University of Athens, University of Notthingam

Research: CEA-Leti, Consorzion Nazionale Interuniversitario Italiano, Centre National de la Recherche Sceintifique

Other: the French national rail society (SNCF) and Centro Ricerche Fiat (vertical industries and end users)

The latest updates on RISE-6G project are available at https://www.linkedin.com/groups/12492572/

####

About CEA Leti
Leti, a technology research institute at CEA, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, CEA-Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. CEA-Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, CEA-Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 3,100 patents, 10,000 sq. meters of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. CEA-Leti has launched 65 startups and is a

member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.



Technological expertise

CEA has a key role in transferring scientific knowledge and innovation from research to industry. This high-level technological research is carried out in particular in electronic and integrated systems, from microscale to nanoscale. It has a wide range of industrial applications in the fields of transport, health, safety and telecommunications, contributing to the creation of high-quality and competitive products.

For more information, please click here

Contacts:
Press Contact

Agency

+33 6 74 93 23 47

Copyright © CEA Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Wireless/telecommunications/RF/Antennas/Microwaves

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Chip-based dispersion compensation for faster fibre internet: SUTD scientists developed a novel CMOS-compatible, slow-light-based transmission grating device for the dispersion compensation of high-speed data, significantly lowering data transmission errors and paving the way for June 30th, 2023

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

HKUST researchers develop a novel integration scheme for efficient coupling between III-V and silicon November 18th, 2022

Internet-of-Things

New nanowire sensors are the next step in the Internet of Things January 6th, 2023

New chip ramps up AI computing efficiency August 19th, 2022

Lightening up the nanoscale long-wavelength optoelectronics May 13th, 2022

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project