Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New study investigates photonics for artificial intelligence and neuromorphic computing

Conceptual layout of a future photonic neuromorphic computer. Picture credit: Thomas Ferreira de Lima
Conceptual layout of a future photonic neuromorphic computer. Picture credit: Thomas Ferreira de Lima

Abstract:
Scientists have given a fascinating new insight into the next steps to develop fast, energy-efficient, future computing systems that use light instead of electrons to process and store information - incorporating hardware inspired directly by the functioning of the human brain.

New study investigates photonics for artificial intelligence and neuromorphic computing

Exeter, UK | Posted on February 1st, 2021

A team of scientists, including Professor C. David Wright from the University of Exeter, has explored the future potential for computer systems by using photonics in place of conventional electronics.

The article is published today (January 29th 2021) in the prestigious journal Nature Photonics.

The study focuses on potential solutions to one of the world's most pressing computing problems - how to develop computing technologies to process this data in a fast and energy efficient way.

Contemporary computers are based on the von Neumann architecture in which the fast Central Processing Unit (CPU) is physically separated from the much slower program and data memory.

This means computing speed is limited and power is wasted by the need to continuously transfer data to and from the memory and processor over bandwidth-limited and energy-inefficient electrical interconnects - known as the von Neumann bottleneck.

As a result, it has been estimated that more than 50 % of the power of modern computing systems is wasted simply in this moving around of data.

Professor C David Wright, from the University of Exeter's Department of Engineering, and one of the co-authors of the study explains "Clearly, a new approach is needed - one that can fuse together the core information processing tasks of computing and memory, one that can incorporate directly in hardware the ability to learn, adapt and evolve, and one that does away with energy-sapping and speed-limiting electrical interconnects."

Photonic neuromorphic computing is one such approach. Here, signals are communicated and processed using light rather than electrons, giving access to much higher bandwidths (processor speeds) and vastly reducing energy losses.

Moreover, the researchers try to make the computing hardware itself isomorphic with biological processing system (brains), by developing devices to directly mimic the basic functions of brain neurons and synapses, then connecting these together in networks that can offer fast, parallelised, adaptive processing for artificial intelligence and machine learning applications.

The state-of-the-art of such photonic 'brain-like' computing, and its likely future development, is the focus of an article entitled "Photonics for artificial intelligence and neuromorphic computing" published in the prestigious journal Nature Photonics by a leading international team of researchers from the USA, Germany and UK.

####

For more information, please click here

Contacts:
Duncan Sandes

07-789-874-838

@uniofexeter

Copyright © University of Exeter

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Photonics for artificial intelligence and neuromorphic computing, B J Shastri et al., Nature Photonics, doi:10.1038/s41566-020-00754-y:

Related News Press

News and information

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Unconventional superconductor acts the part of a promising quantum computing platform: If it looks like a duck, swims like a duck and quacks like a duck, then it probably is a duck. July 16th, 2021

Unlocking efficient light-energy conversion with stable coordination nanosheets: Scientists design a high-performance, self-powered, UV photodetector using 2D nanosheets that show record photocurrent stability under air exposure July 16th, 2021

Possible Futures

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Researchers discover a new inorganic material with lowest thermal conductivity ever reported July 16th, 2021

Chip Technology

Unconventional superconductor acts the part of a promising quantum computing platform: If it looks like a duck, swims like a duck and quacks like a duck, then it probably is a duck. July 16th, 2021

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Stress-free path to stress-free metallic films paves the way for next-gen circuitry: Optimized sputtering technique helps minimize stress in tungsten thin films July 4th, 2021

Optical computing/Photonic computing

Unlocking efficient light-energy conversion with stable coordination nanosheets: Scientists design a high-performance, self-powered, UV photodetector using 2D nanosheets that show record photocurrent stability under air exposure July 16th, 2021

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

Luminaries: Steven DenBaars and John Bowers receive top recognition at Compound Semiconductor Week conference May 21st, 2021

Emergence of a new heteronanostructure library May 14th, 2021

Discoveries

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

Removing the lead hazard from perovskite solar cells July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Announcements

Daikin Industries becomes OCSiAl shareholder July 27th, 2021

The National Space Society Congratulates Blue Origin and Jeff Bezos for the Spectacular First Crewed Flight of the New Shepard: Well-Tested Suborbital Tourist Rocket Soars to 63 Miles; Opens New Frontiers July 21st, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Researchers discover a new inorganic material with lowest thermal conductivity ever reported July 16th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

RUDN University chemists obtained an unusual planar nickel complex exhibiting magnetic properties July 16th, 2021

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

Scientists create rechargeable swimming microrobots using oil and water July 16th, 2021

Scientists take first snapshots of ultrafast switching in a quantum electronic device: They discover a short-lived state that could lead to faster and more energy-efficient computing devices July 16th, 2021

Artificial Intelligence

Argonne researchers use AI to optimize a popular material coating technique in real time June 25th, 2021

Graphene key for novel hardware security May 10th, 2021

With new optical device, engineers can fine tune the color of light April 23rd, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Photonics/Optics/Lasers

Unlocking efficient light-energy conversion with stable coordination nanosheets: Scientists design a high-performance, self-powered, UV photodetector using 2D nanosheets that show record photocurrent stability under air exposure July 16th, 2021

Repairs using light signals: FAU research group develops smart microparticle that identifies defective parts in electrical appliances July 16th, 2021

Graphene drum: Researchers develop new phonon laser design June 18th, 2021

Researchers tame silicon to interact with light for next-generation microelectronics June 11th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project