Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Islands without structure inside metal alloys could lead to tougher materials: These high-entropy alloys could lead to better technologies in transportation, energy and denfense

Proposed hierarchical deformation mechanism paradigm for the equi- atomic CrCoNi-based HEAs subjected to increasing degrees of deformation. Elastic deformation, dislocation-mediated plasticity, twinning-induced plasticity, TRIP, and finally solid-state amorphization. Triggering the next mechanism re- quires the generation of additional defects, i.e., dislocations and/or point defects (vacancies). These multiple mechanisms can interact, leading to a synergy of strengthening processes and a resulting highly complex microstructure.

CREDIT
University of California San Diego
Proposed hierarchical deformation mechanism paradigm for the equi- atomic CrCoNi-based HEAs subjected to increasing degrees of deformation. Elastic deformation, dislocation-mediated plasticity, twinning-induced plasticity, TRIP, and finally solid-state amorphization. Triggering the next mechanism re- quires the generation of additional defects, i.e., dislocations and/or point defects (vacancies). These multiple mechanisms can interact, leading to a synergy of strengthening processes and a resulting highly complex microstructure. CREDIT University of California San Diego

Abstract:
An international team of researchers produced islands of amorphous, non-crystalline material inside a class of new metal alloys known as high-entropy alloys.

Islands without structure inside metal alloys could lead to tougher materials: These high-entropy alloys could lead to better technologies in transportation, energy and denfense

San Diego, CA | Posted on January 29th, 2021

This discovery opens the door to applications in everything from landing gears, to pipelines, to automobiles. The new materials could make these lighter, safer, and more energy efficient.

The team, which includes researchers from the University of California San Diego and Berkeley, as well as Carnegie Mellon University and University of Oxford, details their findings in the Jan. 29 issue of Science Advances.

"These present a bright potential for increased strength and toughness since metallic glasses (amorphous metals) have a strength that is vastly superior to that of crystalline metals and alloys," said Marc Meyers, a professor in the Department of Mechanical and Aerospace Engineering at UC San Diego, and the paper' s corresponding author.

Using transmission electron microscopy, which can identify the arrangement of atoms, the researchers concluded that this amorphization is triggered by extreme deformation at high velocities. It is a new deformation mechanism that can increase the strength and toughness of these high entropy alloys even further.

The research is based on seminal work by Brian Cantor at the University of Oxford, and Jien-Wei Yeh at National Tsing Hua University in Taiwan. In 2004, both researchers led teams that reported the discovery of high-entropy alloys. This triggered a global search for new materials in the same class, driven by numerous potential applications in the transportation, energy, and defense industries.

"Significant new developments and discoveries in metal alloys are quite rare," Meyers said.

###

Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy

Shiteng Zhao and Robert O. Ritchie, University of California Berkeley; Zezhou Li, Wen Yang and Marc A. Meyers, University of California San Diego; Chaoyi Zhu, Carnegie Mellon University; Zhouran Zhang, David E. J. Armstrong and Patrick S. Grant, University of Oxford.

####

For more information, please click here

Contacts:
Ioana Patringenaru

619-253-4474

@UCSanDiego

Copyright © University of California, San Diego

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Princeton-led team discovers unexpected quantum behavior in kagome lattice:Experiments suggest evidence for novel patterns of electronic charge distribution in a kagome material whose handedness can be manipulated with a magnetic field June 18th, 2021

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Possible Futures

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Discoveries

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

Atomic-scale tailoring of graphene approaches macroscopic world June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Materials/Metamaterials

Novel liquid crystal metalens offers electric zoom June 17th, 2021

Active platinum species: Catalytic high-temperature oxidations: Individual atom or metal cluster? June 16th, 2021

New family of atomic-thin electride materials discovered June 11th, 2021

Researchers turned transparent calcite into artificial gold June 11th, 2021

Announcements

Proliferation of electric vehicles based on high-performance, low-cost sodium-ion battery:A large-capacity anode material is developed for sodium-ion batteries by using low-cost silicone-based oil. This process, if commercialized, is expected to significantly reduce manufacturing June 18th, 2021

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Princeton-led team discovers unexpected quantum behavior in kagome lattice:Experiments suggest evidence for novel patterns of electronic charge distribution in a kagome material whose handedness can be manipulated with a magnetic field June 18th, 2021

AI app could help diagnose HIV more accurately: Pioneering technology developed by UCL (University College London) and Africa Health Research Institute (AHRI) researchers could transform the ability to accurately interpret HIV test results, particularly in low- and middle-income June 18th, 2021

Compact quantum computer for server centers: Researchers build smallest quantum computer yet based on industry standards June 18th, 2021

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Military

Novel liquid crystal metalens offers electric zoom June 17th, 2021

Magnetism drives metals to insulators in new experiment: Study provides new tools to probe novel spintronic devices June 4th, 2021

Implantable 'living pharmacy' could control body's sleep/wake cycles: Project receives DARPA contract worth up to $33 million over 4 1/2 years May 13th, 2021

Simple robots, smart algorithms April 30th, 2021

Energy

Changing a 2D material's symmetry can unlock its promise: Jian Shi Research Group engineers material into promising optoelectronic June 18th, 2021

Active platinum species: Catalytic high-temperature oxidations: Individual atom or metal cluster? June 16th, 2021

Molecular coating enhances organic solar cells June 11th, 2021

New form of silicon could enable next-gen electronic and energy devices: Novel crystalline form of silicon could potentially be used to create next-generation electronic and energy devices June 4th, 2021

Automotive/Transportation

Proliferation of electric vehicles based on high-performance, low-cost sodium-ion battery:A large-capacity anode material is developed for sodium-ion batteries by using low-cost silicone-based oil. This process, if commercialized, is expected to significantly reduce manufacturing June 18th, 2021

Active platinum species: Catalytic high-temperature oxidations: Individual atom or metal cluster? June 16th, 2021

CEA-Leti Introduces Plastic mmWave System for Applications Requiring Ultra-Low Latency and Ultra-High-Speed Connectivity: Low-Cost Gb/s Connectivity Overcomes Limits of Copper Wire and Optical Fiber For Automotive, Aeronautics, Telecom, Industry 4.0 and Healthcare Uses May 28th, 2021

A silver lining for extreme electronics April 30th, 2021

Aerospace/Space

NASA Chief Scientist Dr. Jim Green to Appear at the Online NSS International Space Development Conference 2021: This Year's Virtual Conference Streams Free to ALL June 11th, 2021

CEA-Leti Introduces Plastic mmWave System for Applications Requiring Ultra-Low Latency and Ultra-High-Speed Connectivity: Low-Cost Gb/s Connectivity Overcomes Limits of Copper Wire and Optical Fiber For Automotive, Aeronautics, Telecom, Industry 4.0 and Healthcare Uses May 28th, 2021

You're so vein: Scientists discover faster way to manufacture vascular materials May 14th, 2021

Polarization-sensitive photodetection using 2D/3D perovskite heterostructure crystal May 4th, 2021

Research partnerships

New family of atomic-thin electride materials discovered June 11th, 2021

Magnetism drives metals to insulators in new experiment: Study provides new tools to probe novel spintronic devices June 4th, 2021

Hexagonal boron nitride's remarkable toughness unmasked: 2D material resists cracking and description by century-old theory of fracture mechanics June 2nd, 2021

Nanophotonics enhanced coverslip for phase imaging in biology May 14th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project